第23章 自然之流变(2)
西班牙生态学家罗蒙·马格列夫〔罗蒙·马格列夫(Ramon Margalef,1919~2004):巴塞罗纳大学生物系名誉生态学教授,是西班牙当之无愧的科学巨匠。指导、建立了巴塞罗那大学生态学系,1967年成为西班牙首位生态学教授。其重要贡献包括将信息理论运用于生态研究,创造了研究人口的数学模式。〕在此前几年观察到的一个现象,最恰当地阐述了由梅的模拟实验中得出的另一要点。马格列夫像梅一样注意到,由许多成员组成的系统成员彼此之间的联系会很弱,而成员很少的系统其成员彼此间的联系会很紧密。马格列夫这样说:“实际经验表明,那些与别的物种互动自由度大的物种,它们的交际圈子往往很大。相反地,彼此交往密切,互动程度强的物种常常隶属于一个成员很有限的系统。”生态系统内的这种明显的折衷,要么是多数联系松散的成员,要么是少数联系紧密的成员,与众所周知的生物体繁殖策略折衷非常相似:要么生出少数后代并加以妥善保护,要么产出无数后代任其自寻生路。
生物学表明,除了调节网络中每个节点各自的接头数量,系统还趋于调节网络中每对节点之间的“连接性”(连接强度)。自然似乎是保持连接性的不变性的。因此,我们应该料想能在文化、经济和机械系统中找到相似的连接性守恒〔连接性守恒:意指由连接数量和连接强度组成的某种形式的合量保持不变,即连接数量增加时,强度降低;反之亦然。〕定律,尽管我不清楚是否有过这样的研究。如果在所有的活系统中有这样的规律,我们也可料想,这种连接性在流变,永远处于不断调整的状态。
“一个生态系统就是一个活物的网络”,博格斯说。生物通过食物链网、气味和视野以各种不同程度的连接性连接到一起。每个生态系统都是一个动态的网络,总是在流变,总处在重塑自己的过程中。“不论何处,当我们寻找不变时,找到的都是变化”,伯特克写道。
当我们踏上黄石公园朝圣之旅,或去加利福尼亚红树林,又或去佛罗里达湿地,我们总被当地那种可敬的、恰到好处的浑然天成深深打动。熊似乎就应出没于落基山脉的幽深河谷里;红衫林似乎就应摇曳在海岸山丘上,而北美鳄似乎就该呆在平原。我们有一种冲动,要保护它们免遭干扰。但从长远眼光来看,它们全都原本就是过客,既不是此地的老住户,也不会永住于此。鲍肯写道,“自然本身无论是形式、结构还是构成都不会恒久不动,自然无时无地不在变化。”
学者研究从非洲一些湖底的钻孔里得到的花粉化石,发现非洲地貌在过去几百万年中一直处于流变的状态。在过去的某个时刻,非洲的景观看起来和现在迥然不同。现在广袤的撒哈拉沙漠在过去不久的地质时期里是热带森林。而自那时到现在曾出现过许多生态类型。我们认为野性是永恒的;现实中,自然就是受限的流变。
注入人工介质和硅晶片中的复杂性只会有更进一步的流变。虽然我们知道,人类制度——那些凝聚人类心血和梦想的社会生态系统——也一定处在不断的流变和反复破立中,但当变化开始时,我们却总是惊讶或抗拒。(问一个新潮的后现代美国人是否愿意改变订立已200年之久的美国宪法。他会突然变成中世纪的保守派。)
变化本身,而不是红衫林或国家议会,才是永恒的。问题就变成:什么控制着变化?我们怎样引导变化?在政府、经济体和生态系统等松散团体中的分布式生命可以用任一种刻意的方式加以控制吗?我们能预知未来的变化状态吗?
比如说你在密歇根购买了一块100英亩荒废的农田。你用篱笆把四周围起来,把牛和人都隔在外面。然后你走开,监测这块荒地几十年。第一个夏天,园内野草占据这块地。从那以后每年都有篱笆外的新物种被风吹入园内落地生根。有些新来者慢慢地被更新的后来者代替,生态组合在这片土地上自我组织,混合就这样流变经年。如果一位知识渊博的生态学家观察这片围起来的荒野,他能否预测百年之后哪些野生物种会占据这片土地?
“是的,毫无疑问他能预测,”斯图亚特·皮姆说,“但这预测不会像人们想的那样有趣。”
翻开所有标准的大学生态学课本,在有关生物演替概念的章节中都可找到这块密歇根热土最后的形态。第一年到访的杂草是每年开花的草本植物,接着被更坚韧的多年生植物如沙果草和豚草取代,木本的灌木丛会荫蔽并抑制开花植物的生长,随后松树又抑制了灌木的生长。不过,松树的树荫保护了山毛榉和枫树等阔叶木的幼苗,接下来轮到后者坚定地把松树挤出地盘。百年之后,典型的北方阔叶林就几乎完全覆盖了整块土地。
整个过程,就好像这片土地本身就是一粒种子。第一年长出一堆野草,过了一些年,它变成浓密的灌木丛,再后来它长成了繁茂的树林。这块土地演替的画卷按着可以预知的阶段逐步展开,正如我们可以预知蛙卵将以何种方式变成蝌蚪。
这种发育过程还有其他奇特的侧面,如果这块新开发地开始于100英亩潮湿的沼泽区,而不是一块田地,或者换成同样大小的密歇根干燥多沙的沙丘,那么最初来接管的物种是不同的(沼泽上会是莎草,沙丘上会是覆盆子),但是物种的混合逐渐向同一个终点会聚,那就是阔叶林。三粒不同的种子孵化成同样的成体。这种会聚现象使得生态学家萌生了生物演替存在终点或是顶极群落〔顶级群落:群落演替的最终阶段是顶极群落。顶极群落是最稳定的群落阶段,其中各主要种群(如某种阔叶林、松、牧草等)的出生率和死亡率达到平衡,能量的输入和输出以及生产量和消耗量也都达到了平衡。只要气候、地形等条件稳定,不发生意外,顶极群落可以几十年几百年保持稳定而不发生演替。现在地球上的群落大多是在没有人为干扰下经过亿万年的演替而达到的顶极群落。――摘自《普通生物学-生命科学通论》,陈阅增。〕的设想。在某一区域,所有生态混合体趋于转替直到它们达到一种成熟、终极、稳定的和谐。
在气候温和的北方,土地“想要”的是阔叶林。只要时间充足,干涸的湖泊或风沙沼泽地都会成为阔叶林。如果再暖和一点,高山山顶也会有此愿望。就好像在复杂的吃与被吃的食物链网中,无休止的生存竞争搅动着该地区混杂在一起的物种,直到混合态变成阔叶林这种顶极形态(或是其他气候条件下的特定顶极群落),那时,一切就会平静地归于一种大家都可接受的和平,土地就在顶点混合状态下平息下来。
演替达到顶极期时,多样物种间的相互需求漂亮地合拍,使整体很难遭到破坏。在短短三十年内,北美的原种栗树就完全消失了〔北美原种栗树的消失:一百年前,美国东海岸还都生长着巨大的美洲栗树。在阿巴拉契山脉,许多山头都是整片的栗树林。人们说,松鼠们只需在栗树的枝头跳跃,就可以轻松地从南方的佐治亚跳到纽约,爪子都不用沾地。一百年前,物种交流引起一场大灾难。亚洲移植的栗树携带有一种霉菌,亚洲栗树对这种霉菌有很强的抗病力,美洲栗树对此却毫无抵抗能力。从第一棵树的发病开始,只经历了短短几十年,到上世纪五十年代,美国东部地区九百万英亩森林中的主要品种--美洲栗树,已经事实上全部灭绝了。直到现在,得到很多民众支持的美洲栗树基金会仍在做着徒劳而不懈的努力。〕——这些强势的栗树本是北美森林主体的重要组成部分。然而,森林的其他部分并未遭受巨大影响,森林依然挺立着。物种间的特殊混合产生的持久稳定性——生态系统——显示了类似属于有机体的和谐性的某种盆地效应。互相支撑中驻留着某种具有整体性而且富有生命力的东西。也许一片枫树林仅仅是由较小有机体组成的巨大的有机体。
另一方面,奥尔多·利奥波德写道,“若依普通的物理度量,无论是质量还是能量,松鸡在一英亩的土地生态系统中仅是沧海一粟。但是若从系统里拿走松鸡,整个系统也就停转了。”
6.3生态系统:超有机体,抑或是身份作坊〔身份作坊:物种的身份——即其区别于其他物种的特性——不是特意地、带有预判地创造的,而是通过“彩排……物种彼此尝试演练不同的角色”,进化到某处,自然而然地涌现出来的,因而是漫无目的的、作坊式的、细敲碎打的。
6.3生态系统:超有机体,抑或是身份作坊?
1916年,生态学奠基人之一弗雷德里克·克莱门茨〔弗雷德里克·克莱门茨(Frederic Clements,1874~1945):美国植物生态学家,植被演替研究的先驱。〕把类似山毛榉阔叶林这样的生物群落称为自然产生的超有机体。用他的话说,顶极群落构成的就是一个超有机体,因为“它产生,发展,成熟,死亡...的主要特点,堪比单株植物的生命历程。”由于森林自身就能在荒废的密歇根田地里再次播种,克莱门茨将其描绘为繁殖,生物体的另一个特性。对于任何一位敏锐的观察者而言,山毛榉—枫树林〔山毛榉-枫树林群落:是北美地区常见的植物顶极群落。〕差不多和乌鸦一样展示出了完整性和身份特征。能够可靠地繁殖自身,并在空地和不毛的沙地上传播,除了(超)有机体,我们还能把它叫做什么?
二十世纪二十年代,超有机体在生物学家眼里可是个时髦词。用来描述在那时尚属新奇的想法:群集的干员(agent)协力行动,产生由整个群体控制表达的种种现象。就像点点霉斑将自身聚合为粘液菌,一个生态系统也能结合而成一个稳定的超组织(super organization)——蜂群或森林。一片乔治亚州松树林的行为与单棵松树不同。得克萨斯州山艾树荒原也不同于单棵的山艾树,就像鸟群不是一只大鸟,它们是另一种有机体。动植物联合成松散的联邦,展现出一个有自己独特行为方式的超有机体。
克莱门茨的竞争对手,另一位现代生态学之父,生物学家格利森〔H.A.格利森(H.A.gleason,1882~1975):美国著名生态学家、植物学家及分类学家,以其对个体/开放群落的生态演替概念的支持而著称。〕认为,超有机体联邦的观点过于牵强,很大程度上是人类内心的产物,试图能在各处发现模式。格利森反对克莱门茨的假设,他提出顶极群落仅仅是生物体偶然形成的联合,其兴衰取决于当地气候和地质条件。生态系统更似一个联合会而非社区——不确定,多元,包容,不断流变。
自然界的万千变化为这两种观点都提供了证据。在某些地方,群落间的边界是明确的,更符合生态系统是超级有机体的期待。太平洋西北部多岩石的海岸沿线,高潮期的海藻群落和临水侧的云杉林之间是杳无人烟的贫瘠海滩。站在数尺宽的狭窄沙盐地带,仿佛可以感受到两侧的两个超有机体,正忙碌着各自的烦恼尘缘。另一个例子在中西部地区,落叶林和开满野花的草原之间有着无法渗透的边界,引人注目。
为解开生态超有机体之谜,生物学家威廉姆·汉密尔顿〔威廉姆·汉密尔顿(William Hamilton,1936~2000):英国进化生物学家,二十世纪最伟大的进化理论家。〕从二十世纪七十年代开始在电脑上为生态系统建模。他发现,在他的模型中(和现实生活中一样)很少有系统能自组织形成任何一种可持久的连贯一致性。我上述的例子是野外生物界的例外。他还找到了另外几个例子:几千年来,水藓泥炭沼泽抵制了松树的入侵。苔原冻土带也是如此。但是大多数生态群落跌跌撞撞地发展出的杂交混合物种,并未作为一个整体给整个群落提供特别的自卫能力。从长远来看,大多数生态群落,不管模拟的还是真实的,都很容易受到外部的侵入。
格利森是正确的。一个生态系统内各成员间的连接远比有机体内各成员间的连接更为易变和短暂。从控制论的角度看,象蝌蚪这样的有机体和淡水沼泽这样的生态系统之间控制方式的不同在于,单个有机体受到严格紧密的束缚,而生态系统则宽松自由,不受束缚。
长远来看,生态群是临时性的网络。尽管有些群落相互联系紧密,近乎共生,大多数物种在进化期内还是漫无目的地随着伙伴的自身进化而与不同的伙伴同行。
从进化的时间尺度上看,生态学可以看做一场漫长的带妆彩排。对生物类型来说,那就是个身份作坊。物种变换角色尝试与每个物种合作,探索合作关系。随着时间的推移,角色和扮演融入到生物体的基因中。用诗意的话讲,基因不愿意将取决于其邻伴行为方式的任何交互作用和功能吸收进自己的编码,因为邻里关系时时刻刻都在发生变化替换。基因宁愿为保持灵活、独立和自由付出些代价。
同时,克莱门茨也是对的。存在某种效率盆地:假定其他条件不变,可以使特定的混合群体达到稳定的和谐状态。譬如,设想一下山谷两边岩石滚落谷底的方式。不是所有的岩石都能在谷底着陆;某些石头可能会卡在某个小山丘。同样,在山水间的某处,也可以发现未达到顶极群落状态的稳定的中间级物种混合群落。在极短的地质时期——几十万年——内,生态系统形成一个亲密的团体,既与外界无涉也无需额外物种加入。这些联合体的生命甚至远比个体物种的生命还要短暂,个体物种通常可以存续一两百万年。