上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.基本方程
(1)连续性方程
流动液体的连续性方程是从质量守恒定律演化出来的。即液体在密封管道内作恒定流动时,设液体不可压缩,则单位时间内流过每一通流截面的液体质量必然相等。如果管道内两个通流截面分别为A 1、A 2,液体的平均流速为v1、v2,液体的密度为ρ,则有
A1v1=A2v2=常量
上式称为连续性方程,它说明了在同一管路中,无论通流面积怎样变化,只要液体是连续的,没有空隙,没有泄漏,液体通过任一截面积的流量是相等的,同时还说明了同一管路中通流面积大的地方液体流速小,通流面积小的地方则液体流速大。当通流面积一定时,通过液体的流量越大,其流速也越大。
(2)伯努利方程
伯努利方程表明了流动液体的能量守恒定律。
① 理想液体的伯努利方程。理想液体没有黏性,它在管内作恒定流动时没有能量损失。根据能量守恒定律,同一管路在各个截面上液体的总能量都相等。即在管路中流动的理想液体具有压力能、位能和动能三种形式的能量,在任一截面上这三种能量可以互相转换,但其总和保持不变。
② 实际液体的伯努利方程。实际液体具有黏性,在管路流动时,为了克服黏性阻力需要消耗能量,因此,伯努利方程实际应用时有能量损失,流速不均匀也须修正。
伯努利方程是流体力学的重要方程,在液压传动中常与连续性方程一起应用来求解系统中的压力和速度问题。