Darwin and Modern Science
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

第140章

Presumably some blood enters the eggs and causes the cytolytic effects in a less degree than is necessary for membrane-formation, but in a sufficient degree to cause their development. The slightness of the cytolytic effect allows the egg to develop without treatment with hypertonic sea-water.

Since the entrance of the spermatozoon causes that degree of cytolysis which leads to membrane-formation, it is probable that, in addition to the cytolytic or membrane-forming substance (presumably a higher fatty acid), it carries another substance into the egg which counteracts the deleterious cytolytic effects underlying membrane-formation.

The question may be raised whether the larvae produced by artificial parthenogenesis can reach the mature stage. This question may be answered in the affirmative, since Delage has succeeded in raising several parthenogenetic sea-urchin larvae beyond the metamorphosis into the adult stage and since in all the experiments made by the writer the parthenogenetic plutei lived as long as the plutei produced from fertilised eggs.

(c). ON THE PRODUCTION OF TWINS FROM ONE EGG THROUGH A CHANGE IN THECHEMICAL CONSTITUTION OF THE SEA-WATER.

The reader is probably familiar with the fact that there exist two different types of human twins. In the one type the twins differ as much as two children of the same parents born at different periods; they may or may not have the same sex. In the second type the twins have invariably the same sex and resemble each other most closely. Twins of the latter type are produced from the same egg, while twins of the former type are produced from two different eggs.

The experiments of Driesch and others have taught us that twins originate from one egg in this manner, namely, that the first two cells into which the egg divides after fertilisation become separated from each other. This separation can be brought about by a change in the chemical constitution of the sea-water. Herbst observed that if the fertilised eggs of the sea-urchin are put into sea-water which is freed from calcium, the cells into which the egg divides have a tendency to fall apart. Driesch afterwards noticed that eggs of the sea-urchin treated with sea-water which is free from lime have a tendency to give rise to twins. The writer has recently found that twins can be produced not only by the absence of lime, but also through the absence of sodium or of potassium; in other words, through the absence of one or two of the three important metals in the sea-water.

There is, however, a second condition, namely, that the solution used for the production of twins must have a neutral or at least not an alkaline reaction.

The procedure for the production of twins in the sea-urchin egg consists simply in this:--the eggs are fertilised as usual in normal sea-water and then, after repeated washing in a neutral solution of sodium chloride (of the concentration of the sea-water), are placed in a neutral mixture of potassium chloride and calcium chloride, or of sodium chloride and potassium chloride, or of sodium chloride and calcium chloride, or of sodium chloride and magnesium chloride. The eggs must remain in this solution until half an hour or an hour after they have reached the two-cell stage. They are then transferred into normal sea-water and allowed to develop. From 50 to 90 per cent of the eggs of Strongylocentrotus purpuratus treated in this manner may develop into twins. These twins may remain separate or grow partially together and form double monsters, or heal together so completely that only slight or even no imperfections indicate that the individual started its career as a pair of twins. It is also possible to control the tendency of such twins to grow together by a change in the constitution of the sea-water. If we use as a twin-producing solution a mixture of sodium, magnesium and potassium chlorides (in the proportion in which these salts exist in the sea-water) the tendency of the twins to grow together is much more pronounced than if we use simply a mixture of sodium chloride and magnesium chloride.

The mechanism of the origin of twins, as the result of altering the composition of the sea-water, is revealed by observation of the first segmentation of the egg in these solutions. This cell-division is modified in a way which leads to a separation of the first two cells. If the egg is afterwards transferred back into normal sea-water, each of these two cells develops into an independent embryo. Since normal sea-water contains all three metals, sodium, calcium, and potassium, and since it has besides an alkaline reaction, we perceive the reason why twins are not normally produced from one egg. These experiments suggest the possibility of a chemical cause for the origin of twins from one egg or of double monstrosities in mammals. If, for some reason, the liquids which surround the human egg a short time before and after the first cell-division are slightly acid, and at the same time lacking in one of the three important metals, the conditions for the separation of the first two cells and the formation of identical twins are provided.

In conclusion it may be pointed out that the reverse result, namely, the fusion of normally double organs, can also be brought about experimentally through a change in the chemical constitution of the sea-water. Stockard succeeded in causing the eyes of fish embryos (Fundulus heteroclitus) to fuse into a single cyclopean eye through the addition of magnesium chloride to the sea-water. When he added about 6 grams of magnesium chloride to 100cubic centimetres of sea-water and placed the fertilised eggs in the mixture, about 50 per cent of the eggs gave rise to one-eyed embryos.