第十一章 概率与统计
【亮点扫描 规律探析】
亮点1突出数据的收集、整理、分析和综合应用的考查
亮点2注重“数据处理能力”与“实践能力和创新意识”的考查
亮点3重视与实际生活的紧密联系
【热点试题 分类精选】
基础过关
1.(2015四川)某学校为了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是().
A.抽签法
B.系统抽样法
C.分层抽样法
D.随机数法
2.(2014湖南)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则().
A.p1=p2<p3
B.p2=p3<p1
C.p1=p3<p2
D.p1=p2=p3
3.(2014广东)已知某地区中小学生人数和近视情况分别如图(1)和图(2)所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2% 的学生进行调查,则样本容量和抽取的高中生近视人数分别是().
第3题图
A.200,20
B.100,20
C.200,10
D.100,10
4.(2015湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为().
A.134石
B.169石
C.338石
D.1365石
5.(2015全国2)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是().
第5题图
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关
6.(2015湖北)已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是().
A.x与y负相关,x与z负相关
B.x与y正相关,x与z正相关
C.x与y正相关,x与z负相关
D.x与y负相关,x与z正相关
7.(2015北京模拟)某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是().
A.
B.
C.
D.
8.(2014湖北)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则().
A.p1<p2<p3
B.p2<p1<p3
C.p1<p3<p2
D.p3<p1<p2
9.(2014湖北)根据如下样本数据:
得到的回归方程为,则().
A.a>0,b>0
B.a>0,b<0
C.a<0,b>0
D.a<0,b<0
10.(2014全国课标)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是().
A.
B.
C.
D.
11.(2014重庆)已知变量x与y正相关,且由观测数据算得样本平均数,,则由观测的数据得线性回归方程可能为().
A.
B.
C.
D.
12.(2015山东)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为().
(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A.4.56%
B.13.59%
C.27.18%
D.31.74%
13.(2015湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为().
第13题图
A.2386
B.2718
C.3413
D.4772
14.(2015江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为______.
15.(2015湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是______.
16.(2014江西)10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是______.
17.(2014江苏)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是______.
18.(2014广东)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为______.
19.(2014天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取______名学生.
20.(2015广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=______.
21.(2015北京)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
22.(2014四川)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
23.(2015福建)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.
(1)求当天小王的该银行卡被锁定的概率;
(2)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.
24.(2015陕西)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:
(1)求T的分布列与数学期望E(T);
(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.
25.(2014湖南)某企业甲,乙有两个研发小组,他们研发新产品成功的概率分别为和,现安排甲组研发新产品A,乙组研发新产品B.设甲,乙两组的研发是相互独立的.
(1)求至少有一种新产品研发成功的概率;
(2)若新产品A研发成功,预计企业可获得利润120万元,若新产品B研发成功,预计企业可获得利润100万元,求该企业可获得利润的分布列和数学期望.
26.(2015四川)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己的座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.
(1)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处).
(2)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.
27.(2014安徽)甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).
28.(2014全国大纲)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.
(1)求同一工作日至少3人需使用设备的概率;
(2)X表示同一工作日需使用设备的人数,求X的数学期望.
29.(2014广东)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36,根据上述数据得到样本的频率分布表如下:
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.
30.(2014湖南)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:
(a,b),a,(),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b),(a,b),其中a,分别表示甲组研发成功和失败;b,分别表示乙组研发成功和失败.
(1)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;
(2)若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.
31.(2014全国课标)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
第31题图
(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组数据用该区间的中点值作代表).
(2)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,δ2),其中μ近似为样本平均数,δ2近似为样本方差s2.
(i)利用该正态分布,求P(187.8<Z<212.2);
(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求E(X).
附:.
若Z~N(μ,δ2),则P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.
32.(2014辽宁)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如下:
第32题图
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
33.(2014山东)乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其他情况记0分.对落点在A上的来球,小明回球落点在C上的概率是,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响.求:
(1)小明两次回球的落点中恰有一次的落点在乙上的概率;
(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.
第33题图
34.(2014陕西)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量具有随机性,且互不影响,其具体情况如下表:
(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
35.(2014天津)某大学志愿者协会有6名男同学、4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.
36.(2014全国课标)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为
中档提升
37.(2015安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为().
A.8
B.15
C.16
D.32
38.(2015陕西)设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为().
A.
B.
C.
D.
39.(2014江西)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是().
表1
表2
表3
表4
A.成绩
B.视力
C.智商
D.阅读量
40.(2014广东)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为().
A.50
B.40
C.25
D.20
41.(2014山东)为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,如图所示是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为().
第41题图
A.6
B.8
C.12
D.18
42.(2014陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为().
A.
B.
C.
D.
43.(2014全国课标)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是().
A.0.8
B.0.75
C.0.6
D.0.45
44.(2014湖北)由不等式确定的平面区域记为 Ω1,不等式确定的平面区域记为Ω2,在Ω1 中随机取一点,则该点恰好在Ω2 内的概率为().
A.
B.
C.
D.
45.(2014辽宁)正方形的四个顶点A(-1,-1),B(1,-1),C(1,1),D(-1,1)分别在抛物线y=-x2和y=x2上,如图所示,若将一个质点随机投入正方形ABCD中,则质点落在阴影区域的概率是 .
第45题图
46.(2014浙江)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.
47.(2014上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是______.(结果用最简分数表示)
48.(2014重庆)某校早上8:00上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时间到校是等可能的,则小张比小王至少早5分钟到校的概率为______.(用数字作答)
49.(2015北京)高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.
第49题图
从这次考试成绩看,
① 甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是______;
② 在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是______.
50.(2015上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则E(ξ1)-E(ξ2)=______(元).
51.(2014陕西)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.
52.(2014北京)李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):
(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;
(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较E(X)与的大小.(只需写出结论)
53.(2015广东)下图为某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300] 分组的频率分布直方图.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?
第53题图
54.(2015全国2)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地区:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可).
(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.
55.(2014福建)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求
(i)顾客所获的奖励额为60元的概率;
(ii)顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.
56.(2014四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列.
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
57.(2014重庆)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)X表示所取3张卡片上的数字的中位数,求X的分布列(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数).
58.(2015山东)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)写出所有个位数字是5的“三位递增数”;
(2)若甲参加活动,求甲得分X的分布列和数学期望E(X).
59.(2015北京模拟)2014年12月28日开始,北京市公共电汽车和地铁按照里程分段计价.具体如下表.(不考虑公交卡折扣情况)
已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.
(1)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;
(2)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2人,记X为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X的分布列和数学期望;
(3)小李乘坐地铁从A地到陶然亭的票价是5元,返程时,小李乘坐某路公共电汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s公里,试写出s的取值范围.(只需写出结论)
第59题图
60.(2015北京模拟)某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:
第60题图
假设甲、乙两种酸奶独立销售且日销售量相互独立.
(1)写出频率分布直方图(甲)中的a的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,,试比较与的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(3)设X表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求X的数学期望.
压轴突破
61.(2015湖北)在区间[0,1]上随机取两个数x,y,记p1为事件“”的概率,p2为事件“”的概率,则().
A.
B.
C.
D.
62.(2014浙江)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.
(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);
(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则().
A.p1>p2,E(ξ1)<E(ξ2)
B.p1<p2,E(ξ1)>E(ξ2)
C.p1>p2,E(ξ1)>E(ξ2)
D.p1<p2,E(ξ1)<E(ξ2)
63.(2014湖北)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
64.(2015湖北)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(1)求Z的分布列和均值;
(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.
65.(2014江西)随机将1,2,…,2n(n∈N∗,n≥2)这2n个连续正整数分成A,B两组,每组n个数,A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2,记ξ=a2-a1,η=b1-b2.
(1)当n=3时,求ξ的分布列和数学期望;
(2)令C表示事件ξ与η的取值恰好相等,求事件C发生的概率P(C);
(3)对(2)中的事件C,表示C的对立事件,判断P(C)和P()的大小关系,并说明理由.