自序
我们所生活的世界,就像一片数据混沌(Data Chaos),大数据爆炸式增长并以惊人的速度进行传播,社交网络的实时性打破了数据发布的时空限制,信息流动的速度、广度和深度让传统管理决策模式面临挑战,还有科技高速发展所带来的冲击都在加大未来的不确定性。如何从数据混沌中发现规律,成为预测未来的“先知”,是历代人类的梦想。不管是古人的占卜,前几年的专家系统、数据挖掘、商业智能,还是当下的机器学习、人工智能、深度学习等技术应用,都源于降低未来的不确定性这一本源需求。软件在加速吞噬物理世界,大数据在淹没我们有限的大脑认知,而大部分人对其技术原理和特性却知之甚少。我们寄希望于大数据智能技术这根“救命稻草”,帮助我们面向过去,发现数据规律,归纳已知;面向未来,学习数据趋势,预测未知,从而提升对事物的理解和决策处置能力。然而,要达到这一目标并不容易,人工智能发展60年,进展缓慢,直到现在才出现些许曙光。
DT(Data Technology)时代,大数据驱动的人工智能技术生逢其时,从战胜人类顶尖棋手、帮助发现引力波到自动驾驶、精准医疗、安全防控等,就像望远镜改变了我们对宇宙的看法,显微镜改变了我们对微观世界的认知,而通过大数据智能技术来解构我们亲手塑造的数字世界,代表了一种新的认知范式。可以预见的是,随着深度智能技术的高速发展和这一拨“猫”“狗”AI工程的野蛮生长,人类正在大踏步迈入大数据智能时代。面对兴起的大数据智能热潮,如何应对新兴技术应用带来的挑战?我们又有多少深入的理解?对于技术、架构、算法、伦理、趋势知多少?甲骨文CEO Larry Ellison(拉里·埃里森)曾说过:“信息科技是唯一能媲美好莱坞的产业,技术明星可能比荧幕明星陨落得更快。”前沿信息技术从来不缺流行词,从IT到DT,从移动互联网到物联网,从云计算到框计算,从数据库到数据湖,从云存储到区块链,从大数据到大数据智能。当谈及人工智能时,更是这样,有机器智能,还有计算智能;有机器学习,还有深度学习;有感知计算,还有认知计算;有Watson还有AlphaGo;有TensorFlow还有Pytorch。一堆眼花缭乱的技术名词和系统框架,让人云里雾里,内行要全面掌握已是困难重重,外行要摸出门道,可谓难上加难。
面对庞杂的大数据智能科学与技术生态体系,还有眼花缭乱的技术热词,有的是新瓶装旧酒,有的是全新的技术理念和架构,有的是一阵风突然冒出又很快散去,有的是三起两落几十年而不倒……上述种种技术我们如何快速入门,把握重点,理解本质,并有效学习和应用?这是一大挑战!市面上的同领域作品要么偏社科解读,浮于概念介绍;要么偏技术细节,局限于某个技术点。
如何从业务到技术,从学习到实践,从治理到应用,抽丝剥茧、拨开数据驱动智能科学与技术迷雾,洞察大数据和人工智能相关技术生态的全景视图,构建完整的大数据智能知识结构与技术体系?这是一大难题!笔者跟从大数据和人工智能应用的融合之路,通过分析和解读整个数据驱动智能科学技术,希望能给读者提供一个大数据智能核心技术体系的入门学习和应用参考指南。本书写作初衷即基于此,无奈水平有限、涉猎有限、精力有限,难免有遗误的地方,还望同行批评指正。如能为读者提供一点点有益的参考,则心愿足矣。
杜圣东
2018年10月
轻松注册成为博文视点社区用户(www.broadview.com.cn),扫码直达本书页面。
● 提交勘误:您对书中内容的修改意见可在 提交勘误 处提交,若被采纳,将获赠博文视点社区积分(在您购买电子书时,积分可用来抵扣相应金额)。
● 交流互动:在页面下方 读者评论 处留下您的疑问或观点,与我们和其他读者一同学习交流。
页面入口:http://www.broadview.com.cn/35684