参 考 文 献
[1] 吴玉萍.合成氨工艺[M].北京:化学工业出版社,2008.
[2] 魏顺安.天然气化工工艺学[M].北京:化学工业出版社.2009.
[3] Baratholomew C H.Carbon deposition in steam reforming and methanation[J].Catalysis Reviews:Science and Engineering,1982,24(1):67-112.
[4] Baratholomew C H.Mechanism of catalyst deactivation[J].Applied Catalysis A:General,2000,212:17-60.
[5] Trimm D L.Catalysts for the control of coking during steam reforming [J] .Catalysis Today,1999.49:3-10.
[6] Sutthiumporn K,Maneerung T,Kathiraser Y,et al.CO2 dry-reforming of methane over La0.8Sr 0.2Ni0.8M0.2O3 perovskite(M=Bi,Co,Cr,Cu,Fe):Roles of lattice oxygen on C-H activation and carbon suppression [J].International Journal of Hydrogen Energy,2012,37:11195-11207.
[7] Kathiraser Y,Thitsartarn W,Sutthiumporn K,et al.Inverse NiAl2O4 on LaAlO3-Al2O3:Unique catalytic structure for stable CO2 reforming of methane [J] .The Journal of Physical Chemistry C,2013,117:8120-8130.
[8] Wang N,Yu X,Wang Y,et al.A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15,MCM-41 and silica carrier [J].Catalysis Today,2013,212:98-107.
[9] Wang N,Chu W,Zhang T,et al.Manganese promoting effects on the Co-Ce-Zr-Ox nano catalysts for methane dry reforming with carbon dioxide to hydrogen and carbon monoxide [J].Chemical Engineering Journal,2011,170:457-463.
[10] Wang N,Chu W,Huang L,et al.Effects of Ce/Zr ratio on the structure and performances of Co-Ce1-xZrxO2 catalysts for carbon dioxide reforming of methane [J].Journal of Natural Gas Chemistry,2010,19:117-122.
[11] Zhu X,Huo P,Zhang Y,et al.Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane [J] .Applied Catalysis B:Environmental,2008,81:132-140.
[12] Wang N,Shen K,Yu X,et al.Preparation and characterization of a plasma treated NiMg SBA-15 catalyst for methane reforming with CO2 to produce syngas [J] .Catalysis Science & Technology,2013,3:2278-2287.
[13] Wang N,Shen K,Huang L,et al.A facile route for synthesizing ordered mesoporous Ni-Ce-Al oxides materials and their catalytic performance for methane dry reforming to hydrogen and syngas [J].ACS Catalysis,2013,3:1638-1651.
[14] Quek X Y,Liu D,Cheo W N E,et al.Nickel-grafted TUD-1 mesoporous catalysts for carbon dioxide reforming of methane [J].Applied Catalysis B:Environmental,2010,95:374-382.
[15] Wang N,Xu Z,Deng J,et al.One-pot synthesis of ordered mesoporous NiCeAl oxide catalysts and a study of their performance in methane dry reforming [J].ChemCatChem,2014,6:1470-1480.
[16] Wang N,Chu W,Zhang T,et al.Synthesis,characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas[J].International Journal of Hydrogen Energy,2012,37:19-30.
[17] Vilé G,Colussi S,Krumeich F,et al.Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis[J].Angewandte Chemie-International Edition,2014,53:12069-12072.
[18] Mann A K P,Wu Z,Calaza F C,et al.Adsorption and reaction of acetaldehyde on shape-controlled CeO2 nanocrystals:Elucidation of structure function relationships[J].ACS Catalysis,2014,4:2437-2448
[19] Wu Z,Li M,Overbury S H.On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes[J].Journal of Catalysis,2012,285:61-73.
[20] Torrente-Murciano L,Gilbank A,Puertolas B,et al.Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons [J] .Applied Catalysis B:Environmental,2013,132-133:116-122.
[21] 李绍芬.化学与催化反应工程[M].北京:化学工业出版社,1986.
[22] Delmno B,Grange P,Jacobs P,et al.Preparation of Catalysts.Elsevier Scientific Publishing company.New York:Amsterdam Oxford,1979;李大东,等译.催化剂的制备[M].北京:化学工业出版社,1988.
[23] 沈师孔,李春义,余长春.Ni/Al2O3催化剂上甲烷部分氧化制合成气反应机理[J].催化学报,1998,19(4):309-314.
[24] 李庆勋,刘业飞,王铁峰.甲烷非催化部分氧化制乙炔和合成气过程的实验研究[J].过程工程学报,2010,10(03):536-541.
[25] Liu Y,Wang T,Li Q,et al.A Study of Acetylene Production by Methane Flaming in a Partial Oxidation Reactor[J].Chinese Journal of Chemical Engineering,2011,19(3):424-433.
[26] 刘志红,丁石,程易.甲烷催化部分氧化制合成气研究进展[J].石油与天然气化工,2006,35(1):10-12.
[27] 金锡祥,等.一氧化碳变换技术及进展[J].小氮肥,1998,(8):1-8.
[28] 丁家灏,徐波.国产低温变换催化剂在节能流程氨厂的使用[J].工业催化,1998,3:35-42.
[29] Oh S H.Carbon monoxide removal from hydrogen-rich fuel cell feed streams by selective catalytic oxidation[J].J Catal,1993,142:254-262.
[30] Watanabe M.Pt catalyst supported on zeolite for selective oxidation of CO in reformed gases[J].Chem Letters,1995:21-23
[31] Konrad J,Antoni J.Fluidized-bed catalysis of the carbon monoxide reaction with steam[J].Chem Stosouana,1961,5:261-279.
[32] Ivanov D G,Grozer G.Reaction of CO with water vapor over a fluidized catalyst in a magnetic field[J].CA,1972:129437W.
[33] Anokhin V N,Traber D G,Mukhlenov I P,et al.Fluidized-bed catalytic conversion of carbon monoxide[J].Tr Leningr,Tekhnol Inst Im,Lensoveta,1959,54:37-46.
[34] Antoni I,Janio K,Gorzka Z,et al.The iron-chromium catalyst in a fluidized bed for the conversion of CO with vapor[J].Przemyst Chem,1959,38:39-44,93-97.
[35] Alumkai W T.The water gas shift reaction in a fluidized bed catalytic reactor[D].Missoula:Montana State University,1967.
[36] 骞伟中.流化床中碳纳米管与氢气制备研究[D].北京:清华大学,2002.
[37] 骞伟中,汪展文,魏飞,等.流化床反应器中高浓度CO制氢研究//第三届全国氢能利用大会.杭州:2001,13-15:185-190.
[38] 舒玉瑛,徐奕德.甲烷无氧脱氢芳构化研究进展[J].石油与天然气化工,1998,27(2):80-83.
[39] 舒玉瑛.甲烷脱氢芳构化:不同分子筛载体的影响和Mo物种的表征[D].大连:中国科学院大连化物所,2000.
[40] Rabinovich V A,Kahvin Y E.Kratkij Khimicheskij Spravochnik.Leninggrad,1988.
[41] Wang L Sh,Tao L X,Xie M S,et al.Dehydrogenation and aromatization of methane under non oxidizing eondiyions [J].Catal Lett,1993,21(1):35-41.
[42] Tan P L,Xu Z S,Liu W ,et al.Aromatization of methane over different Mo-supported catalysts in the absence of oxygen[J].React Kinet Catal Lett,1997,61(2):391-398.
[43] Solymosi F,Erdöhelyi A,Szöke A.Dehydrogenation of methane on supported molybdenum oxides formation of benzene from methane[J].Catal Lett,1995,32(1):43-50.
[44] Zhang C L,IA S,Yuan Y.Aromatization of methane in the absence of oxygen over Mo based catalysts supported on different types of zeolites[J].Catal Lett,1998,56(4):207-214.
[45] Shu Y Y,Ma D,Xu L.Methane dehydro-aromatization over Mo/MCM-22 catalysts:a highly selective catalyst for the formation of benzene[J].Catal Lett,2000,70(1-2):67-73.
[46] 吕元,林励吾,徐竹生.甲烷无氧芳构化制芳烃双功能催化剂的研究[J].中国科学(B辑),2000,30(3):217-226.
[47] Weckhuysen B M,Wang D J,Rosynek M,et al.Conversion of methane to benzene over transition metal ion ZSM-5 zeolite[J].J Catal,1998,175(2):338-346.
[48] 王林胜,陶龙骧,谢茂松,等.甲烷催化转化法制苯[J].科学通报,1994,39(6):574-575.
[49] Zeng J L,Xiong Z T,Zhang H B.Nonoxidative dehydrogenation and aromatization of methane over W/HZSM 5 based catalyst[J].Catal Lett,1998,53(1-2):119-124.
[50] Li S,Zhang C,Kan Q,et al.The function of Cu(Ⅱ)ions in the Mo/CuH-ZSM-5 catalyst for methane conversion under non oxidative condition[J].Appl Catal A,1999,187(2):199-206.
[51] 舒玉瑛,徐奕德,王林胜,等.添加Ru的Mo/HZSM-5催化体系上甲烷无氧脱氢芳构化[J].催化学报,1997,18(5):392-396.
[52] 刘自力,林维明,林绮纯,等.稀土改性Mo/HZSM-5催化剂上甲烷直接芳构化反应的研究[J].天然气化工,1997,22(6):23-25.
[53] Ohnishi R,Liu S,Dong Q,et al.Catalytic dehydrocondensation of methane with CO and CO2 toward benzene and naphthalene on Mo/HZSM-5 and Fe/Co-modified Mo/HZSM 5[J].J Catal,1999,182(1):92-103.
[54] 吕功煊,丁彦,潘霞,等.水蒸气存在时Mo/HZSM-5催化剂上的甲烷芳构化反应性能[J].催化学报,1999,20(6):619-622.
[55] Yuan S,Li J,Hao Z.The effect of oxygen on the aromatization of methane over the Mo/HZSM-5 catalyst[J].Catal Lett,1999,63(1-2):73- 77.
[56] 刘红梅,李涛,田丙伦,等.Mo/HZSM-5催化剂上甲烷无氧芳构化反应中积炭的研究[J].催化学报,2001,22(4):373-376.
[57] Honda K,Yoshida T,Zhang Z.Methane dehydroaromatization over Mo/HZSM-5 in periodic CH4-H2 switching operation mode[J].Catal Comm,2003,4(1):21-26.
[58] Bai J,Xie S,Liu S,et al.In situ regeneration of Mo/MCM-22 with 1% O2 at reaction temperature[J].Chin J Catal,2003,24(11):805-806.
[59] Xu Y,Liu S,Wang L,et al.Methane activation without using oxidants over Mo/HZSM-5 zeolite catalyst[J].Catal Lett,1995,30(1-2):135-140.
[60] 魏彤.甲烷无氧芳构化工艺过程研究.北京:清华大学.
[61] 魏飞,魏彤,黄河,等.甲烷无氧芳构化研究进展及其工业应用前景分析.石油学报,2006,22(1):1-5.
[62] 骞伟中,魏飞,魏彤,等.一种连续芳构化与催化剂再生的装置及其方法[P].中国,200810102684.0,2012-5-23.
[63] 骞伟中,杨吉红,魏飞,等.一种甲烷芳构化制备芳烃的方法及设备[P].中国,200810111735.6.
[64] 黄河,骞伟中,魏彤,等.流化床中甲烷芳构化过程[J].化工学报,2006,57(8):1918-1922.
[65] Krijn P D J,John W G,Carbon Nanofibers:Catalytic Synthesis and Applications[J].Catalysis Reviews:Science and Engineering,2000,42:481-510.
[66] Li Y D,Chen J L,Qin Y N,et al.Simultaneous production of hydrogen and nanocarbon from decomposition of methane over nickel-based catalyst[J].Energy & Fuels,2000,14:1188-1194.
[67] 贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1995:96-112.
[68] 魏飞,骞伟中.碳纳米管的宏量制备技术[M].北京:科学出版社,2012.
[69] Cui CJ,Qian WZ,Zheng C,et al.Formation mechanism of carbon encapsulated Fe nanoparticles in the growth of single-/double-walled carbon nanotubes[J].Chem Eng J,2013,223:617-622.
[70] Muradov N.Hydrogen via methane decomposition:an application for decarbonization of fossil fuels[J].International Journal of Hydrogen Energy,2001,26:1165-1175.
[71] 陈久岭.甲烷催化裂解生产碳纳米纤维及其应用的基础研究[D].天津:天津大学,1999.
[72] Ermakova M A,Ermakov D Y,Kuvshinov G G.Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon,Part I.Nickel catalysts[J].Applied Catalysis A:general,2000,201:61-70.
[73] Avdeeva L B,Goncharova O V,Kochubey D I,et al.Coprecipitated Ni-Al and Ni-Cu-Al catalyst for methane decomposition and carbon deposition:Ⅱ,evolution of the catalysts in reaction[J].Applied Catalysis A:General,1996,141:117-123.
[74] Yang R T,Yang K L.Evidence of temperature driven diffusion mechanism of coke deposition on catalysts[J].Journal of Catalysis,1985,93:182-185.
[75] Snocek J W,Froment G F,Fowles M.Kinetic study of the carbon filament formation by methane cracking on a nickel catalyst[J].Journal of Catalysis,1997,169:250-262.
[76] Yang R T,Yang K L.Mechanism of carbon filament growth on metal catalysts[J].Journal of Catalysis,1989,115:52-55.
[77] Zhang T J.Amiridis M D.Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts[J].Applied Catalysis A:General,1998,167:161-172.
[78] Aiello R,Fiscus J E,Loye H C Z,et al.Hydrogen production via the direct cracking of methane over Ni/SiO2:catalyst deactivation and regeneration[J].Applied Catalysis A:General,2000,192:227-234.
[79] Wu N L,Wang S Y,Rusakova I A.Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxide[J].Science,1999.
[80] Su M,Zheng B,Liu J.Ascalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity.Chem Phys Lett,2000,322(5):321-326.
[81] Nie JQ,Qian WZ,Zhang Q,et al.Very High-Quality Single-Walled Carbon Nanotubes Grown Using a Structured and Tunable Porous Fe/MgO Catalyst[J].J Phys Chem C,2009,113(47):20178-20183.
[82] Liu Y,Qian WZ,Zhang Q,et al.The confined growth of double-walled carbon nanotubes in porous catalysts by chemical vapor deposition[J].Carbon,2008,46(14):1860-1868.
[83] Wen Q,Qian WZ,Wei F,et al.CO2-assisted SWNT growth on porous catalysts[J].Chem Mater,2007,19(6):1226-1230.
[84] Zhang Q,Qian WZ,Wen Q,et al.The effect of phase separation in Fe/Mg/Al/O catalysts on the synthesis of DWCNTs from methane[J].Carbon,2007,45(8):1645-1650.
[85] Qian WZ,Liu T,Wei F,et al.Carbon nanotubes containing iron and molybdenum particles as a catalyst for methane decomposition[J].Carbon,2003,41(4):846-848.
[86] Wen Q,Zhang RF,Qian WZ,et al.Growing 20 cm Long DWNTs/TWNTs at a Rapid Growth Rate of 80~90μm/s[J].Chem Mater,2010,22(4):1294-1296.
[87] Otsuka K,Mito A,Takenaka S,et al.Production of hydrogen from methane without CO2-emission mediated by indium oxide and iron oxide[J].International Journal of Hydrogen Energy,2001,26:191-194.
[88] Qian WZ,Liu T,Wei F,et al.Enhanced production of carbon nanotubes:combination of catalyst reduction and methane decomposition[J].Appl Catal A,2004,258:121-124.
[89] Qian WZ,Tian Tao,Guo CY,et al.Enhanced activation and decomposition of CH4 by the addition of C2H4 or C2H2 for hydrogen and carbon nanotube production[J].Journal of Physical Chemistry C,2008,112(20):7588-7593.
[90] Qian WZ,Wei F,Wang ZW,et al.Production of Carbon Nanotubes in a Packed Bed and a Fluidized Bed[J].AICHE J,2003,49:619-623.
[91] Liu Y,Qian WZ,Zhang Q,et al.Synthesis of High-Quality,Double-Walled Carbon Nanotubes in a Fluidized Bed Reactor[J].Chem Eng & Techn,2009,32(1):73-79.
[92] Qian WZ,Liu T,Wang ZW,et al.Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor[J].Appl Catal A,2004,260:223-228.
[93] 骞伟中,魏飞,王垚,等.多段流化床技术用于多相催化与纳米材料合成过程[J].化工学报,2010(09):2186-2191.
[94] Yun S,Qian WZ,Cui CJ,et al.Highly selective synthesis of single-walled carbon nanotubes from methane in a coupled Downer-turbulent fluidized-bed reactor[J].J Energy Chem,2013,22(4):567-572.