三、数字示波器的主要指标
1.示波器的带宽
带宽是示波器最重要的一个指标,它决定了这台示波器测量高频信号的能力。前面我们介绍过,示波器的带宽主要由前端的放大器等模拟器件的特性决定。对于一般的放大器来说,其增益不可能在任何频率下都保持一样,示波器中使用的放大器也是如此。示波器中的放大器的工作频点是从直流开始的,其增益随着输入信号的频率增高会逐渐下降。一般把放大器增益下降-3dB对应的频点称为这个放大器的带宽,示波器的带宽也是用同样方法定义的。图3.1是示波器带宽定义的示意图。
图3.1 示波器带宽的定义
对于一台标称带宽为1GHz的示波器,假设输入一个标准的50MHz、1V峰峰值的正弦波信号,在示波器上测量到的信号幅度为A;然后将输入信号的幅度保持不变,频率逐渐增加到1GHz,这时在示波器上测量到的信号幅度为B。如果20lg(B/A)的计算结果没超过-3dB(例如为-2.8dB),这台示波器就是合格的,否则就是不合格的。对于示波器的带宽检定通常使用的也是这种方法。
需要注意的是,-3dB是按信号功率计算的,相当于信号的功率增益下降1/2。示波器实际测量的是电压信号,功率与电压的平方成正比,所以-3dB相当于示波器电压的增益随着频率的增加下降到原来的0.707倍。因此,对于一个50MHz、1V峰峰值的正弦波信号,用1GHz带宽的示波器测量到的幅度应该是1V左右,而如果被测信号的幅度不变但是频率增加到1GHz,这时测量到的信号幅度可能只有0.7V左右了。
从前面的例子可以看出,示波器并不是对带宽内的所有频率信号都保持相同的测量精度的,被测信号频率越接近带宽附近,测量结果的幅度误差越大,如果这个幅度误差超过了可以接收的范围,就要考虑用更高带宽的示波器进行测量。另外示波器也不是绝对不可以对超过带宽的信号进行测量,如果被测信号的频率只是稍微超过了示波器的带宽,虽然信号的衰减会比较大,但大概的频率、周期等时间信息还是比较准确的(对正弦波信号)。
至于具体某个频点的衰减是多大,需要准确知道示波器的频响曲线。一般示波器厂商在公开的场合只会提供带宽指标而没有具体的频响曲线,如果确实需要,可以通过用微波信号源配合功率计扫描得到这条曲线。
示波器的带宽主要取决于前端的衰减器和放大器的带宽,因此大的示波器厂商都有自己特有的技术来实现高的带宽。以Keysight公司为例,其33GHz的示波器前端芯片采用InP(磷化铟)的高频材料,并使用了MCM(Multi-Chip Module)的多芯片封装技术,打开其MCBGA(多芯片BGA)芯片的屏蔽壳后(见图3.2),可以看到其内部主要由5片InP材料的芯片采用三维工艺封装而成。其中包含2片33GHz带宽InP材料做成的放大器,可以同时支持2个通道的信号输入;2片InP材料做成的触发芯片以及1片InP材料做成的80GSa/s的采样保持电路;所有芯片采用快膜封装技术封装在一个密闭的屏蔽腔体内。
图3.2 采用InP材料的示波器前端芯片
随着信号频率和数据速率的提高,对于示波器带宽的需求越来越高。如果没有能力设计高带宽的放大器前端,或者现有的硬件技术无法提供足够高的带宽时,有时会采用一些其他的方式来提升带宽,其中常用到的是DSP带宽增强和频带交织技术。
DSP带宽增强技术实际上是一种数字DSP处理技术。采用数字DSP处理技术的初衷并不是为了增强带宽,而是为了进行频响校正。一般宽带放大器在带内各个频点的增益不一定是完全一致的,所以宽带放大器通常会有一个带内平坦度指标衡量增益的波动情况。通过用数字技术补偿频响波动可以在带内获得比较平坦的频响曲线,获得更准确的测量结果。进一步地,为了充分利用带宽以外频点的能量,可以通过数字处理技术把带宽以外一部分频率成分的能量增强上去,这样-3dB对应的频点就会右移,相当于带宽提高了。图3.3显示了带宽增强对系统频响特性的改变。带宽增强技术在提高带宽的同时也会提升系统的高频噪声,所以这种技术虽然提高了带宽,但增加了噪声。带宽增加越多,噪声的放大比例越大。因此,带宽增强技术虽然实现简单,但不适用于大比例增加系统带宽。反过来,用数字处理技术还可以根据需要压缩带宽。带宽压缩的同时一部分频率成分的噪声也被滤掉,所以在不需要高带宽时可以降低系统噪声。带宽增强和压缩技术在很多高端示波器上都有使用。
图3.3 DSP带宽增强技术
除了DSP带宽增强以外,频带交织技术也是另一种提升带宽的方法。频带交织技术是在频域上把信号分成两个或多个频段处理,例如把输入信号分成低频段和高频段两个频段分别采样和处理,再用DSP技术合成在一起。图3.4是频带交织技术实现的原理。例如,假设放大器硬件带宽只能做到16GHz,而希望实现25GHz的带宽,这就要把16GHz以下的能量滤波后用一个放大器放大后采样,16~25GHz的能量经滤波、下变频后再用另一个放大器放大后采样。这种方法推广开来可以3个频段或4个频段复用实现更高的带宽。但是有射频知识的人都知道,硬件上是做不出来那么理想的滤波器,正好把需要的频率都放进来,同时把不需要的频率分量都滤掉的,而且宽带信号的下变频的过程会产生非常多的信号混叠和杂散问题。因此,使用这种方法后,如果硬件电路设计和数学修正方法不好,在频段的交界点附近会有很大的问题,最典型的表现就是在频段交界点附近噪声会明显抬高,信号失真明显变大。
图3.4 频带交织技术实现原理