2.4 遗传算法的特点
遗传算法是模拟生物在自然环境中的遗传和进化的过程而形成的一种并行、高效、全局搜索的方法,它主要有以下特点:
(1)遗传算法以决策变量的编码作为运算对象。这种对决策变量的编码处理方式,使得在优化计算过程中可以借鉴生物学中染色体和基因等概念,模仿自然界中生物遗传和进化的机理,方便地应用遗传操作算子。特别是对一些只有代码概念而无数值概念或很难有数值概念的优化问题,其编码处理方式更显示出了独特的优越性。
(2)遗传算法直接以目标函数值作为搜索信息。它仅使用由目标函数值变换来的适应度函数值,就可确定进一步的搜索方向和搜索范围,而不需要目标函数的导数值等其他一些辅助信息。实际应用中很多函数无法或很难求导,甚至根本不存在导数,对于这类目标函数的优化和组合优化问题,遗传算法就显示了其高度的优越性,因为它避开了函数求导这个障碍。
(3)遗传算法同时使用多个搜索点的搜索信息。它对最优解的搜索过程是从一个由很多个体所组成的初始群体开始的,而不是从单一的个体开始的。对这个群体所进行的选择、交叉、变异等运算,产生新一代的群体,其中包括了很多群体信息。这些信息可以避免搜索一些不必搜索的点,相当于搜索了更多的点,这是遗传算法所特有的一种隐含并行性。
(4)遗传算法是一种基于概率的搜索技术。遗传算法属于自适应概率搜索技术,其选择、交叉、变异等运算都是以一种概率的方式来进行的,从而增加了其搜索过程的灵活性。虽然这种概率特性也会使群体中产生一些适应度不高的个体,但随着进化过程的进行,新的群体中总会更多地产生许多优良的个体。与其他一些算法相比,遗传算法的鲁棒性使得参数对其搜索效果的影响尽可能小。
(5)遗传算法具有自组织、自适应和自学习等特性。当遗传算法利用进化过程获得信息而自行组织搜索时,适应度大的个体具有较高的生存概率,并获得更适应环境的基因结构。同时,遗传算法具有可扩展性,易于同别的算法相结合,生成综合各自优势的混合算法。