电动车辆能量转换与回收技术(第2版)
上QQ阅读APP看书,第一时间看更新

参考文献

[1]WANG C, WU H, CHEN Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithiumion batteries [J]. Nat Chem, 2013(17):1802-1809.

[2]FAVORS Z J, WANG W, BAY H H, et al. Stable cycling of SiO2 nanotubes as high-performance anodes for lithiumion batteries [J]. Sci Rep, 2014(4):5121-5127.

[3]LI Y, SONG J, YANG J. Progress in research on the performance and service life of batteries membrane of new energy automotive [J]. Chin Sci Bull, 2012(57):4153-4159.

[4]LI Y, SONG J, YANG J. Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes [J]. Renew Sustain Energy Rev, 2014, 10:1016.

[5]SUO L M, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries [J]. Nat Commun, 2013(4):148-153.

[6]SHIN B R, NAM Y J, KIM J W, et al. Interfacial architecture for extra Li+ storage in all-solid-state lithium batteries [J]. Sci Rep, 2014(4):5572-5581.

[7]EBNER M, GELDMACHER F, MARONE F, et al. X-Ray tomography of porous, transition metal oxide based lithium lon battery electrodes [J]. Adv Energy Mater, 2013(10):1012-1019.

[8]JUNG D S, HWANG T H, PARK S B, et al. Spray drying method forlarge-scale and high-performance silicon negative electrodes in Li-ion batteries [J]. Nano Lett, 2013(13):2092-2097.

[9]LIU G, ZHENG H, SONG X, et al. Particles and polymer binder interaction: a controlling factor in lithiumion electrode performance [J]. Electrochem Soc, 2012(159):A214-A221.

[10]DE VOLDER M F L, TAWCK S H, BAUGHMAN R H, et al. Carbonnanotubes: present and future commercial applications [J]. Science, 2013(339):535-539.

[11]WANG X J, HOU Y Y, ZHU Y S, et al. An aqueous rechargeable lithium battery using coated Li metal as anode [J]. Sci Rep, 2013(3):1401-1407.

[12]WANG J J, SUN X L. Understanding and recent development of carboncoating on LiFePO4 cathode materials for lithiumion batteries [J]. Energy Environ Sci, 2012(5):5163-1585.

[13]LIU N, LU Z D, ZHAO J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes [J]. Nat Nanotechnol, 2014(9):187-192.

[14]YI R, DAI F, GORDIN M L, et al. Micro-sized Si-C compositewith interconnected nanoscale building blocks as high-performance anodesfor practical application in lithiumion batteries [J]. Adv Energy Mater, 2013(3): 295-300.

[15]SONG B H, LAI M O, LIU Z W, et al. Graphene-based surfacemodification on layered Li-rich cathode for high-performance Li-ion batteries [J]. Mater Chem, 2013(A1):9954-9965.

[16]CATALAN G, SEIDEL J, RAMESH R, et al. Domain wall nanoelectronics [J]. Rev Mod Phys, 2012(84):119-156.

[17]FAVORS Z J, WANG W, BAY H H, et al. Stable cycling of SiO2nanotubes as high-performance anodes for lithiumion batteries [J]. Sci Rep, 2014(4):5121-5127.

[18]TEE B C, WANG C, ALLEN R, et al. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronicskin applications [J]. Nat Nanotechnol, 2012(7):825-832.

[19]SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes [J]. Nat Mater, 2013(12):827-835.

[20]BOUCHET R, MARIA S, MEZIANE R, et al., Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries [J]. Nat Mater, 2013(12):452-457.

[21]SZCZECH J R, Jin S. Nanostructured silicon for high capacity lithium batteryanodes [J]. Energy Environ Sci, 2011(4): 56-72.

[22]ZHAO Y L, FENG J G, LIU X, et al. Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene [J]. Nat Commun, 2014(5):4565-4573.

[23]GUO B, RUAN H, ZHEN C, et al. Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithiumion batteries [J]. Sci Rep, 2013(3):278-288.