中国新材料研究前沿报告2020
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] Tang C W,Vanslyke S A. Organic electrolumi-nescent diodes. Applied Physics Letters,1987,51(12):913-915.

[2] Tsumura A,Koezuka H,Ando T. Macromolecul-ar electronic device-field-effect transi-stor with a polythiophene thin-film. Applied Physics Letters,1986,49(18):1210-1212.

[3] Yoshikawa K,Kawasaki H,Yoshida W,et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy,2017,2(5):8.

[4] Weinberger B R,Ehrenfreund E,Pron A,et al. Electron-spin resonance studies of magnetic soliton defects in polyacetylene. Journal of Chemical Physics,1980,72(9):4749-4755.

[5] Glenis S,Tourillon G,Garnier F. Photoelectroc-hemical properties of thin-films of poly-thiophene and derivatives-doping level and structure effects. Thin Solid Films,1984,122(1):9-17.

[6] Tang C W. 2-LAYER Organic photovoltaic cell. Applied Physics Letters,1986,48(2):183-185.

[7] Padinger F,Rittberger R S,Sariciftci N S. Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials,2003,13(1):85-88.

[8] Lin Y Z,Wang J Y,Zhang Z G,et al. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Advanced Materials,2015,27(7):1170-1174.

[9] Cui Y,Yao H F,Zhang J Q,et al. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Advanced Materials,2020,32(19):7.

[10] Baibich M N,Broto J M,Fert A,et al. giant magnetoresistance of(001)fe/(001)cr magnetic superlattices. physical Review Letters,1988,61(21):2472-2475.

[11] Binasch G,Grunberg P,Saurenbach F,et al. Enhancedmagnetoresistance in layered magnetic-structures with antiferromagnetic in-terlayer exchange. Physical Review B,1989,39(7):4828-4830.

[12] Xiong Z H,Wu D,Vardeny Z V,et al. Giant magnetoresistance in organic spin-valves. Nature,2004,427(6977):821-824.

[13] Li X Y,Zhang J Y,Zhao Z F,et al. Bluish-Green Cu(I)Dimers Chelated with Thiophene Ring-Introduced Diphosphine Ligands for Both Singlet and Triplet Harvesting in OLEDs. Acs Applied Materials & Interfaces,2019,11(3):3262-3270.

[14] Cheng Z,Li Z Q,Xu Y C,et al. Achieving Efficient Blue Delayed Electrofluorescence by Shielding Acceptors with Carbazole Units. Acs Applied Materials & Interfaces,2019,11(31):28096-28105.

[15] Gan L,Gao K,Cai X Y,et al. Achieving Efficient Triplet Exciton Utilization with Large Delta E-ST and Nonobvious Delayed Fluorescence by Adjusting Excited State Energy Levels. Journal of Physical Chemistry Letters,2018,9(16):4725-4731.

[16] Liang X,Yan Z P,Han H B,et al. Peripheral Amplification of Multi-Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. Angewandte Chemie-International Edition,2018,57(35):11316-11320.

[17] Ke Y,Wang N N,Kong D C,et al. Defect Passivation for Red Perovskite Light-Emitting Diodes with Improved Brightness and Stability. Journal of Physical Chemistry Letters,2019,10(3):380-385.

[18] Yersin H,Mataranga-Popa L,Czerwieniec R,et al. Design of a New Mechanism beyond Thermally Activated Delayed Fluorescence toward Fourth Generation Organic Light Emitting Diodes. Chemistry of Materials,2019,31(16):6110-6116.

[19] Ai X,Chen Y X,Feng Y T,et al. A Stable Room-Temperature Luminescent Biphenylmethyl Radical. Angewandte Chemie-International Edition,2018,57(11):2869-2873.

[20] Peng Q M,Obolda A,Zhang M,et al. Organic Light-Emitting Diodes Using a Neutral pi Radical as Emitter:The Emission from a Doublet. Angewandte Chemie-International Edition,2015,54(24):7091-7095.

[21] Guo H Q,Peng Q M,Chen X K,et al. High stability and luminescence efficiency in donor-acceptor neutral radicals not following the Aufbau principle. Nature Materials,2019,18(9):977.

[22] Lei T,Cao Y,Fan Y L,et al. High-Performance Air-Stable Organic Field-Effect Transistors:Isoindigo-Based Conjugated Polymers. Journal of the American Chemical Society,2011,133(16):6099-6101.

[23] Luo H W,Yu C M,Liu Z T,et al. Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive. Science Advances,2016,2(5):10.

[24] Quinn J T E,Zhu J,Li X,et al. Recent progress in the development of n-type organic semiconductors for organic field effect transistors. Journal of Materials Chemistry C,2017,5(34):8654-8681.

[25] Gao Y,Zhang X J,Tian H K,et al. High Mobility Ambipolar Diketopyrrolopyrrole-Based Conjugated Polymer Synthesized Via Direct Arylation Polycondensation. Advanced Materials,2015,27(42):6753.

[26] Wang Y F,Guo H,Harbuzaru A,et al. (Semi)ladder-Type Bithiophene Imide-Based All-Acceptor Semiconductors:Synthesis,Structure-Property Correlations,and Unipolar n-Type Transistor Performance. Journal of the American Chemical Society,2018,140(19):6095-6108.

[27] Chen F Z,Jiang Y,Sui Y,et al. Donor-Acceptor Conjugated Polymers Based on Bisisoindigo:Energy Level Modulation toward Unipolar n-Type Semiconductors. Macromolecules,2018,51(21):8652-8661.

[28] Ni Z J,Wang H L,Zhao Q,et al. Ambipolar Conjugated Polymers with Ultrahigh Balanced Hole and Electron Mobility for Printed Organic Complementary Logic via a Two-Step C-H Activation Strategy. Advanced Materials,2019,31(10):8.

[29] Pan G X,Chen F,Hu L,et al. Effective Controlling of Film Texture and Carrier Transport of a High-Performance Polymeric Semiconductor by Magnetic Alignment. Advanced Functional Materials,2015,25(32):5126-5133.

[30] Lin F J,Guo C,Chuang W T,et al. Directional Solution Coating by the Chinese Brush:A Facile Approach to Improving Molecular Alignment for High-Performance Polymer TFTs. Advanced Materials,2017,29(34):7.

[31] Bai J H,Jiang Y,Wang Z L,et al. Bar-Coated Organic Thin-Film Transistors with Reliable Electron Mobility Approaching 10 cm(2)V-1 s(-1). Advanced Electronic Materials,2020,6(1):8.

[32] Wang Z L,Song X N,Jiang Y,et al. A Simple Structure Conjugated Polymer for High Mobility Organic Thin Film Transistors Processed from Nonchlorinated Solvent. Advanced Science,2019,6(24):7.

[33] Fan B B,Zhong W K,Ying L,et al. Surpassing the 10% efficiency milestone for 1-cm(2)all-polymer solar cells. Nature Communications,2019,10 8.

[34] Li Z Y,Ying L,Zhu P,et al. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy & Environmental Science,2019,12(1):157-163.

[35] Fan B B,Zeng Z M Y,Zhong W K,et al. Optimizing Microstructure Morphology and Reducing Electronic Losses in 1 cm(2)Polymer Solar Cells to Achieve Efficiency over 15%. Acs Energy Letters,2019,4(10):2466-2472.

[36] Chen H Y,Hu D Q,Yang Q G,et al. All-Small-Molecule Organic Solar Cells with an Ordered Liquid Crystalline Donor. Joule,2019,3(12):3034-3047.

[37] Qin J Z,An C B,Zhang J Q,et al. 15.3% efficiency all-small-molecule organic solar cells enabled by symmetric phenyl substitution. Science China-Materials,2020,63(7):1142-1150.

[38] Hummelen J C,Knight B W,Lepeq F,et al. Preparation and characterization of fulleroid and methanofullerene derivatives. Journal of Organic Chemistry,1995,60(3):532-538.

[39] Zhong Y,Trinh M T,Chen R S,et al. Efficient Organic Solar Cells with Helical Perylene Diimide Electron Acceptors. Journal of the American Chemical Society,2014,136(43):15215-15221.

[40] Qin Y,Ye L,Fan H,et al. Manipulating the nanoscale morphology in the active layers of polymer solar cells. Scientia Sinica Chimica,2016,46(2):195-207.

[41] Cui C H,Li Y W,et al. Fullerene Derivatives for the Applications as Acceptor and Cathode Buffer Layer Materials for Organic and Perovskite Solar Cells. Advanced Energy Materials,2017,7(10):21.

[42] Zhang J Q,Li Y K,Huang J C,et al. Ring-Fusion of Perylene Diimide Acceptor Enabling Efficient Nonfullerene Organic Solar Cells with a Small Voltage Loss. Journal of the American Chemical Society,2017,139(45):16092-16095.

[43] Yao H F,Cui Y,Yu R N,et al. Design,Synthesis,and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-Narrow Band Gap. Angewandte Chemie-International Edition,2017,56(11):3045-3049.

[44] Dai S X,Zhao F W,Zhang Q Q,et al. Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. Journal of the American Chemical Society,2017,139(3):1336-1343.

[45] Chang Y,Lau T K,Pan M A,et al. The synergy of host-guest nonfullerene acceptors enables 16%-efficiency polymer solar cells with increased open-circuit voltage and fill-factor. Materials Horizons,2019,6(10):2094-2102.

[46] Liu Q S,Jiang Y F,Jin K,et al. 18% Efficiency organic solar cells. Science Bulletin,2020,65(4):272-275.

[47] Germs W C,Guo K,Janssen R A. J,et al. Unusual Thermoelectric Behavior Indicating a Hopping to Bandlike Transport Transition in Pentacene. Physical Review Letters,2012,109(1):5.

[48] Sumino M,Harada K,Ikeda M,et al. Thermoelectric properties of n-type C-60 thin films and their application in organic thermovoltaic devices. Applied Physics Letters,2011,99(9):3.

[49] Sun Y N,Wei Z M,Xu W,et al. A three-in-one improvement in thermoelectric properties of polyaniline brought by nanostructures. Synthetic Metals,2010,160(21-22):2371-2376.

[50] Pukacki W,Plocharski J,et al. Anisotropy of thermoelectric-power of stretch-oriented new polyacetylene. Synthetic Metals,1994,62(3):253-256.

[51] Xuan Y,Liu X,Desbief S,et al. Thermoelectric properties of conducting polymers:The case of poly(3-hexylthiophene). Physical Review B,2010,82(11):9.

[52] Lu B Y,Liu C C,Lu S,et al. Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene)Nanofilms. Chinese Physics Letters,2010,27(5):4.

[53] Lu G H,Bu L J,Li S J,et al. Bulk Interpenetration Network of Thermoelectric Polymer in Insulating Supporting Matrix. Advanced Materials,2014,26(15):2359-2364.

[54] Kemp N T,Kaiser A B,Liu C J,et al. Thermoelectric power and conductivity of different types of polypyrrole. Journal of Polymer Science Part B-Polymer Physics,1999,37(9):953-960.

[55] Aich R B,Blouin N,Bouchard A,et al. Electrical and Thermoelectric Properties of Poly(2,7-Carbazole)Derivatives. Chemistry of Materials,2009,21(4):751-757.

[56] Meng Q F,Jiang Q L,Cai K F,et al. Preparation and thermoelectric properties of PEDOT:PSS coated Te nanorod/PEDOT:PSS composite films. Organic Electronics,2019,64:79-85.

[57] Ding J M,Liu Z T,Zhao W R,et al. Selenium-Substituted Diketopyrrolopyrrole Polymer for High-Performance p-Type Organic Thermoelectric Materials. Angewandte Chemie-International Edition,2019,58(52):18994-18999.

[58] Sun Y H,Qiu L,Tang L P,et al. Flexible n-Type High-Performance Thermoelectric Thin Films of Poly(nickel-ethylenetetrathiolate)Prepared by an Electrochemical Method. Advanced Materials,2016,28(17):3351-3358.

[59] Sun Y M,Sheng P,Di C A,et al. Organic Thermoelectric Materials and Devices Based on p- and n-Type Poly(metal 1,1,2,2-ethenetetrathiolate)s. Advanced Materials,2012,24(7):932.

[60] Shi K,Zhang F J,Di C A,et al. Toward High Performance n-Type Thermoelectric Materials by Rational Modification of BDPPV Backbones. Journal of the American Chemical Society,2015,137(22):6979-6982.

[61] Huang D Z,Yao H Y,Cui Y T,et al. Conjugated-Backbone Effect of Organic Small Molecules for n-Type Thermoelectric Materials with ZT over 0.2. Journal of the American Chemical Society,2017,139(37):13013-13023.

[62] Zhang F J,Zang Y P,Huang D Z,et al. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nature Communications,2015,6:10.

[63] Chen B B,Zhou Y,Wang S,et al. Giant magnetoresistance enhancement at room-temperature in organic spin valves based on La0.67Sr0.33MnO3 electrodes. Applied Physics Letters,2013,103(7):4.

[64] Sun X N,Bedoya-Pinto A,Mao Z P,et al. Atxabal A.,Llopis R.,Yu G.,Liu Y Q.,Chuvilin A.,Casanova F. and Hveso L. E.,Active Morphology Control for Concomitant Long Distance Spin Transport and Photoresponse in a Single Organic Device. Advanced Materials,2016,28(13):2609.

[65] Sun X N,Velez S,Atxabal A,et al. A molecular spin-photovoltaic device. Science,2017,357(6352):677.

[66] Ma Y G,Zhang H Y,Shen J C,et al. Electrolu-minescence from triplet metal-ligand charge-transfer excited state of transition metal complexes. Synthetic Metals,1998,94(3):245-248.

[67] Ge F,Liu Z,Lee S B,et al. Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors. Acs Applied Materials & Interfaces,2018,10(25):21510-21517.

[68] Fang Y,Wu X,Lan S,et al. Inkjet-Printed Vertical Organic Field-Effect Transistor Arrays and Their Image Sensors. Acs Applied Materials & Interfaces,2018,10(36):30587-30595.

[69] Oh J Y,Rondeau-Gagne S,Chiu Y C,et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature,2016,539(7629):411-415.

[70] Oh J Y,Son D,Katsumata T,et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Science Advances,2019,5(11):9.

[71] Son D,Kang J,Vardoulis O,et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nature Nanotechnology,2018,13(11):1057.

[72] Chen H J,Guo Y L,Yu G,et al. Highly p-Extended Copolymers with Diketopyrrolopyrrole Moieties for High-Performance Field-Effect Transistors. Advanced Materials,2012,24(34):4618-4622.

[73] Liu X T,Guo Y L,Ma Y Q,et al. Flexible,Low-Voltage and High-Performance Polymer Thin-Film Transistors and Their Application in Photo/Thermal Detectors. Advanced Materials,2014,26(22):3631-3636.

[74] Yang J,Zhao Z,Geng H,et al. Isoindigo-Based Polymers with Small Effective Masses for High-Mobility Ambipolar Field-Effect Transistors. Advanced Materials,2017,29(36).

[75] Yang J,Jiang Y Q,Tu Z Y,et al. High-Performance Ambipolar Polymers Based on Electron-Withdrawing Group Substituted Bay-Annulated Indigo. Advanced Functional Materials,2019,29(7):10.

[76] Zhu C G,Zhao Z Y,Chen H J,et al. Regioregular Bis-Pyridal 2,1,3 thiadiazole-Based Semiconducting Polymer for High-Performance Ambipolar Transistors. Journal of the American Chemical Society,2017,139(49):17735-17738.

[77] Zhang L,Liu H T,Zhao Y,et al. Inkjet Printing High-Resolution,Large-Area Graphene Patterns by Coffee-Ring Lithography. Advanced Materials,2012,24(3):436.

[78] Wang H L,Cheng C,Zhang L,et al. Inkjet Printing Short-Channel Polymer Transistors with High-Performance and Ultrahigh Photoresponsivity. Advanced Materials,2014,26(27):4683.

[79] Jiang Y Y,Chen J Y,Sun Y L,et al. Fast Deposition of Aligning Edge-On Polymers for High-Mobility Ambipolar Transistors. Advanced Materials,2019,31(2):7.

[80] Wang H L,Liu H T,Zhao Q,et al. Three-Component Integrated Ultrathin Organic Photosensors for Plastic Optoelectronics. Advanced Materials,2016,28(4):624-630.

[81] Wang H L,Liu H T,Zhao Q,et al. A Retina-Like Dual Band Organic Photosensor Array for Filter-Free Near-Infrared-to-Memory Operations. Advanced Materials,2017,29(32):9.

作者简介

郭云龙,研究员,博士生导师。2010年于中国科学院化学研究所获博士学位,2019 年获国家优秀青年科学基金资助。主要从事有机聚合物光电材料与器件以及有机-无机杂化材料与器件的研究工作。已在Adv. Mater.、J. Am. Chem. Soc.、Chem.等国际学术期刊上发表 SCI 收录论文130余篇。目前为Adv. Electron. Mater.国际顾问委员会成员。

赵志远,中国科学院化学研究所博士后。2017年于东北师范大学获博士学位。研究方向为高性能有机场效应晶体管的制备及大面积OFET驱动OLED电路。

刘云圻,中国科学院院士,第三世界科学院院士。现为科技部国家重点基础研究发展计划(973计划)重大科学前沿领域第四届专家咨询组副组长、中国化学会理事、有机固体专业委员会副主任。长期从事分子材料与器件的研究,发表SCI论文700余篇,他人引用4万余次。三次获国家自然科学二等奖,获北京市自然科学一等奖一项。2014年至今,连续入选汤森路透全球“高被引科学家”目录。