中华影像医学?乳腺卷(第3版)
上QQ阅读APP看书,第一时间看更新

参考文献

1.鲍润贤.中华影像医学·乳腺卷[M]. 2版.北京:人民卫生出版社,2010:78-85,86-96.
2.Gur D,Abrams GS,Chough DM,et al. Digital breast tomosynthesis:observer performance study[J]. AJR,2009,193:586-591.
3.Hakiml CM,Chough DM,Ganott MA,et al. Digital breast tomosynthesis in the diagnostic environment:a subjective side-by-side review[J]. AJR,2010,195:172-176.
4.Wallis MG,Moa E,Zanca F,et al. Two-view and singleview tomosynthesis versus full-field digital mammography:high-resolution X-ray imaging observer study[J]. Radiology,2012,262(3):788-796.
5.Dang PA,Freer PE,Humphery KL,et al. Addition of tomosynthesis to conventional digital mammography:effect on image interpretation time of screening examinations[J].Radiology,2014,270(1):49-56.
6.边甜甜,林青,李丽丽,等.对比数字乳腺断层合成与乳腺X线摄影对致密型乳腺内肿块的诊断价值[J].中华放射学杂志,2015,49(7):483-487.
7.张云燕,顾雅佳,彭卫军,等.数字乳腺断层合成X线成像结合合成二维图像对乳腺疾病的诊断价值[J].中华放射学杂志,2016,50(11):833-837.
8.Hodgson R,Heywang-Kobrunner SH,Harvey SC,et al. Systematic review of 3D mammography for breast cancer screening[J]. The Breast,2016(27):52-61.
9.杨蕾,李静,周纯武.数字乳腺断层融合X线成像对乳腺病变的诊断价值[J].中华肿瘤杂志,2017,39(1):33-38.
10.Hawley JR,Kang-Chapman JK,Bonnet SE,et al. Diagnostic accuracy of digital breast tomosynthesis in the evaluating of palpable breast abnormalities[J]. Academic Radiology,2018,25(3);297-304.
11.Cheung YC,Lin YC,Wan YL,et al. Diagnostic performance of dual energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone:interobserver blind-reading analysis[J]. Eur Radiol,2014,24(10):2394-2403.
12.姜婷婷,张盛箭,李瑞敏,等.对比增强能谱X线摄影对乳腺疾病的诊断价值[J].中华放射学杂志,2017,51(4):273-278.
13.冯清华,罗良平,余江秀.实时组织弹性成像对乳腺良、恶性肿块诊断价值的Meta分析[J].中国医学影像技术,2011,27(2):321-325.
14.中华医学会放射学分会乳腺学组.乳腺MRI检查共识[J].中华放射学杂志,2014,48(9)723-725.
15.赵莉芸,周纯武,李静,等.动态增强MRI半定量参数预测乳腺癌新辅助化疗疗效[J].中国医学影像技术,2013,29(11):1751-1755.
16.Liu C,Liang C,Liu Z,et al. Intravoxel incoherent motion(IVIM)in evaluation of breast lesions:comparison with conventional DWI[J]. Eur J Radiol,2013,82(12):e782-789.
17.Lee YJ,Kim SH,Kang BJ,et al. Incoherent motion(IVIM)-derived parameters in diffusion-weighted MRI:Associations with prognostic factors in invasive ductal carcinoma[J]. J Magn Reson Imaging. 2016,45(5):1394-1406.
18.车树楠,崔晓琳,李静,等.MR扩散加权成像体素内不相干运动模型对于乳腺良恶性病变诊断价值的研究[J].磁共振成像,2015,6(7):506-512.
19.Sun K,Chen X,Chai W,et al. Breast Cancer:Diffusion Kurtosis MR Imaging-Diagnostic Accuracy and Correlation with Clinical-Pathologic Factors[J]. Radiology,2015,277(1):46-55.
20.柯承露,车树楠,李静.扩散峰度成像鉴别诊断乳腺良恶性病变的价值及联合扩散加权成像的诊断效能[J].中华放射学杂志,2018,52(8):593-597.
21.柯承露,李静.IVIM及DKI在乳腺病变的临床研究进展 [J].磁共振成像,2018;9(2):153-156.
22.Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics:extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer,2012,48(4):441.
23.Aboutalib SS,Mohamed AA,Berg WA,et al. Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening[J]. Clin Cancer Res,2018,24(23):5902-5909.
24.Xu X,Bao L,Tan Y,et al. 1000-Case Reader Study of Radiologists' Performance in Interpretation of Automated Breast Volume Scanner Images with a Computer-Aided Detection System[J]. Ultrasound Med Biol,2018,44(8):1694-1702.