Greenplum构建实时数据仓库实践
上QQ阅读APP看书,第一时间看更新

1.1.1 数据仓库的定义

数据仓库之父Bill Inmon在1991年出版的Building the Data Warehouse一书中首次提出了被广为认可的数据仓库定义。Inmon将数据仓库描述为一个面向主题的、集成的、随时间变化的、非易失的数据集合,用于支持管理者的决策过程。这个定义有些复杂并且难以理解,下面我们将它分解开来进行说明。

1.面向主题

传统操作型系统是围绕公司的功能性应用进行组织的,而数据仓库是面向主题的。主题是一个抽象概念,简单说就是与业务相关的数据的类别,每一个主题基本对应一个宏观的分析领域。数据仓库被设计成辅助人们分析数据。例如,一个公司要分析销售数据,就可以建立一个专注于销售的数据仓库,使用这个数据仓库,就可以回答类似于“去年谁是我们这款产品的最佳用户”这样的问题。这个场景下的“销售”就是一个数据主题,而这种通过划分主题定义数据仓库的能力,就使得数据仓库是面向主题的。主题域是对某个主题进行分析后确定的主题的边界,如客户、销售、产品都是主题域的例子。

2.集成

集成的概念与面向主题密切相关。还用销售的例子,假设公司有多条产品线和多种产品销售渠道,而每个产品线都有自己独立的销售数据库。此时,要想从公司层面整体分析销售数据,必须将多个分散的数据源统一成一致的、无歧义的数据格式,然后再放置到数据仓库中。因此数据仓库必须能够解决诸如产品命名冲突、计量单位不一致等问题。当完成了这些数据整合工作后,该数据仓库就可称为是集成的。

3.随时间变化

为了发现业务变化的趋势、存在的问题,或者新的机会,需要分析大量历史数据。这与联机事务处理(OLTP)系统形成鲜明对比。联机事务处理反应的是当前时间点的数据情况,要求高性能、高并发和极短的响应时间。出于这样的需求考虑,联机事务处理系统中一般都将数据依照活跃程度分级,把历史数据迁移到归档数据库中。而数据仓库关注的是数据随时间变化的情况,并且能反映在过去某个时间点的数据是怎样的。换句话说,数据仓库中的数据是反映了某一历史时间点的数据快照,这也就是术语“随时间变化”的含义。当然,任何一个存储结构都不可能无限扩展,数据也不可能只入不出地永久驻留在数据仓库中,它在数据仓库中也有自己的生命周期。到了一定时候,数据会从数据仓库中移除,移除的方式可能是将细节数据汇总后删除、将老的数据转储到大容量介质后删除或直接物理删除等。

4.非易失

非易失指的是,一旦进入到数据仓库中,数据就不应该再有改变。操作型环境中的数据一般都会频繁更新,而在数据仓库环境中一般并不进行数据更新。当改变的操作型数据进入数据仓库时会产生新的记录,这样就保留了数据变化的历史轨迹。也就是说,数据仓库中的数据基本是静态的。这是一个不难理解的逻辑概念。数据仓库的目的就是要根据曾经发生的事件进行分析,如果数据是可修改的,将使历史分析变得没有意义。

除了以上四个特性外,数据仓库还有一个非常重要的概念,就是粒度。粒度问题遍布于数据仓库体系结构的各个部分。粒度是指数据的细节或汇总程度,细节程度越高,粒度级别越低。例如,单个事务是低粒度级别,而一个月全部事务的汇总就是高粒度级别。

数据粒度一直是数据仓库设计需要重点思考的问题。在早期的操作型系统中,当细节数据被更新时,几乎总是将其存放在最低粒度级别上;而在数据仓库环境中,通常不这样做。例如,如果数据被装载进数据仓库的频率是每天一次,那么一天之内的数据更新将被忽略。

粒度之所以是数据仓库环境的关键设计问题,是因为它极大地影响了数据仓库的数据量和可以进行的查询类型。粒度级别越低,数据量越大,查询的细节程度就越高,查询范围就越广泛,反之亦然。

大多数情况下,数据会以很低的粒度级别进入数据仓库,如日志类型的数据或点击流数据,此时应该对数据进行编辑、过滤和汇总,使其适应数据仓库环境的粒度级别。如果得到的数据粒度级别比数据仓库的高,那将意味着在数据存入数据仓库前,开发人员必须花费大量的设计和资源来对数据进行拆分。