序言二
作为一个科班出身的计算机从业人员,深知在机器学习领域摸爬滚打的不易。在山东大学学习期间,我学的是软件工程,对编程有浓厚的兴趣,陈竹敏老师认可我的才能,并让我参加与美国得克萨斯州大学的合作项目,还推荐我继续读研究生。在读研的两年期间,北大的杨雅辉老师对我的学习给予了极多的指导。后来,我又跟随微软亚洲研究院的袁进辉老师学习,收获良多,从一个动手能力极弱的“小白”成长为能熟练编写代码的机器学习工程师。现在从业三年,也指导了许多学弟、学妹进入职场,希望自己也能像我的老师们一样无私地传授知识。
回想自己学习机器学习的经历,感慨良多。本科毕业时,尽管已经学习了《微积分》《线性代数》《离散数学》《数理统计》《计算机组成原理》《编译原理》《操作系统》《算法导论》《运筹学》等教材,我却并没有见到这些本应有极高价值的书本知识在实际工作中发挥多大的作用,因此十分迷茫。当时陈竹敏老师推荐我继续深造,从此折节读书,半载后来到梦寐以求的学府——北京大学。感谢我的室友,他们的专业(自然语言处理和机器学习)对我产生了极大的影响,也终于看到了自己投入时间学习的课程知识能够发挥的价值。为了不至于落后周围人太多,我深居简出,自学了《数值分析》《测度论》《代数》《统计学》《贝叶斯统计》《图论》《矩阵论》《凸优化》等教材,并且了解与学习了衍生的应用学科知识,研读《机器学习》《密码学》《应用回归分析》《组合数学》等书籍。工作以后,虽然有很多想要深入学习的细分理论知识,买了《实变函数与泛函分析》《博弈论》《拓扑学》等图书,但是一直苦于没有足够的时间,这些书籍已经在书架上落灰了。
上面罗列了一些教材,其实是想给在校的学生朋友学习机器学习提供一个书单。当然,纸上学来终觉浅,绝知此事要躬行,任何理论知识只有在实际场景中应用或实验,才能加深理解。
作为一个机器学习领域的新人,我也在不断认真学习机器学习的理论,希望能够在工作中充分应用所学知识。我曾在传统行业工作,后来进入大数据领域,在电商行业摸爬滚打。我觉得人应该脚踏实地,无论身处何种行业,都应该在一个专业领域深入地学习。现在,我已经是一个父亲,肩上的责任越来越重,但是我十分感恩。感谢家人,让我学会了真诚待人,享受生活中的一切美好。
吴哲夫