国际科学前沿重点领域和方向发展态势报告2020
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.5 小结

核糖核酸(RNA)领域经过几十年的发展,由早期的重点关注编码蛋白基因的RNA,转变到目前重点关注大量的非编码RNA在生命调控及其在医学与农业等领域的应用,而且由最初的基础研究向应用研究、技术开发、成果转化与产业化不断拓展和延伸。从创新链角度看,目前RNA生物学已经发展成相对完善的体系,由前端的基础研究(RNA生成加工与降解、新型RNA识别与鉴定、RNA结构鉴定与功能解析),中端的应用研究(应用于医学、农业等),后端的产业转化(新药、新型诊断产品开发、动植物新品种、新农药与兽药等),以及影响整个领域发展的相关新技术开发(包括研究技术与产业化技术)和RNA信息学(相关数据库与平台建设、算法开发)五大部分组成。未来,随着RNA介导的基因组编辑技术等新技术的发展,以及海量RNA信息被充分挖掘利用,各类RNA在生命中的调控作用将被更清楚地揭示,并与医学与农业交叉融合,推进相关研究成果在这些领域中的应用与产业化,RNA生物学将在人类健康与国民经济发展中发挥重要作用(见图1.13)。

图1.13 RNA领域学科框架

为此,美国、欧盟、日本将RNA生物学作为重点研究领域给予持续资助。该领域新的研究前沿与热点不断涌现;RNA干扰、RNA适配体和RNA介导的基因编辑技术三大核心技术被越来越广泛地应用于疾病治疗、农业生产中,相关研究用技术也发展迅速。

在药物研发与产业化方面,Cortellis数据库收录的目前有效的在研核糖核酸药物共692个,这些药物的重要适应证包括肿瘤、罕见病、传染病、胃肠疾病、呼吸系统疾病、神经系统疾病等。未来以RNA药物为代表的核酸药物市场将进入发展快车道。

我国长期资助各类RNA基础研究项目,并在近年来开始资助RNA医学与农业领域的研究。经检索,我国非编码RNA领域2016—2020年SCI论文62997篇,超过美国,排名全球第一,占全球的54.68%,ESI高水平论文量也已经超过美国,但发表在NatureScienceCell三大期刊上的论文量与美国有较大差距;2016—2020年的专利量为6589件,排名第二,仅次于美国,占全球的33.11%;目前在研新药50个,占全球的7.23%,远低于美国的454个(占全球的65.61%),表明我国RNA领域基础研究实力强,但成果转化效率低。比较国际、国内布局重点可以看出,与美国、欧盟相比,我国近年来开始重视RNA医学等应用研究,但资助重点仍在基础研究、应用基础研究方面。因此,我国在保持基础研究优势的同时,需要加强RNA应用研究资助,促进基础研究与应用研究的成果转化,重视技术开发与平台建设,出台相关政策促进研究成果转化。

致谢 中山大学生物工程研究中心主任、中国生物化学与分子生物学会核糖核酸专业委员会主任屈良鹄教授,对本章提出了宝贵的意见和建议,谨致谢忱。

执笔人:中国科学院上海营养与健康研究所/中国科学院上海生命科学信息中心

阮梅花、袁天蔚、于建荣、熊燕


[1]Stanford University.ENCODE 2016:Research Applications and Users Meeting[EB/OL].[2018-09-20].https://www.genome.gov/27566810/encode-2016-research-applications-and-users-meeting/.

[2]ENCODE 3[EB/OL].[2020-08-03].https://www.nature.com/immersive/d42859-020-00027-2/index.html.

[3]ENCODE 4[EB/OL].[2020-10-09].https://www.encodeproject.org/search/?type=Experiment&status=released&award.rfa=ENCODE4.

[4]NIH RNA Biology[EB/OL].[2020-10-09].https://irp.nih.gov/our-research/scientific-focus-areas/rna-biology.

[5] TNRF Projects[EB/OL].[2020-07-09].https://ncats.nih.gov/rnai/projects.

[6]Extracellular RNA Communication[EB/OL].[2020-03-09].https://commonfund.nih.gov/exrna/fundedresearch.

[7] Epigenomics Funded research[EB/OL].[2020-05-09].https://commonfund.nih.gov/epigenomics/fundedresearch.

[8]Exploring Epigenomic or Non-Coding RNA Regulation in HIV/AIDS and Substance Abuse (R01)[EB/OL].[2020-07-09].https://grants.nih.gov/grants/guide/rfa-files/RFA-DA-16-012.html.

[9]Exploring Epigenomic or Non-Coding RNA Regulation in the Development,Maintenance,or Treatment of Chronic Pain (R61/R33 Clinical Trial Optional)[EB/OL].[2020-06-09].https://grants.nih.gov/grants/guide/pa-files/PAR-18-742.html.

[10] NIH Director's Pioneer Award (DP1)[EB/OL].[2020-06-09].https://commonfund.nih.gov/pioneer/fundedresearch.

[11] NIH Director's New Innovator Award Recipients[EB/OL].[2020-09-09].https://commonfund.nih.gov/newinnovator/AwardRecipients.

[12]Sequencing and Non-coding RNA Program[EB/OL].[2020-06-09].https://www.mdanderson.org/research/research-resources/core-facilities/ncrna-program.html.

[13]Horizon Europe structure and the first calls[EB/OL].[2020-06-09].https://ec.europa.eu/info/horizon-europe_en.

[14]An atlas of miRNAs[EB/OL].[2020-07-09].http://fantom.gsc.riken.jp/5/suppl/De_Rie_et_al_2017/.

[15] The FANTOM5 project reports nearly 20,000 functional lncRNAs in human[EB/OL].[2020-11-09].http://fantom.gsc.riken.jp/5/.

[16]Introduction to FANTOM6[EB/OL].[2020-08-09].https://fantom.10gsc.riken.jp/6/.

[17]国家自然科学基金委员会.基因信息传递过程中非编码RNA的调控作用机制重大研究计划2017年度项目指南[EB/OL].[2020-08-09].http://www.nsfc.gov.cn/publish/portal0/zdyjjh/info68565.htm.

[18]国家自然科学基金重大项目“长非编码RNA调控网络在恶性肿瘤转移中的功能和机制研究”2016年年度交流会在京召开[EB/OL].[2020-09-09].http://www.nsfc.gov.cn/publish/portal0/tab434/info53635.htm.

[19]PANG Y N,MAO C B,LIU S R.Encoding activities of non-coding RNAs[J].Theranostics,2018,8(9):2496-2507.

[20]BRATKOVIC T,BOZIC J,ROGELJ B.Functional diversity of small nucleolar RNAs[J].Nucleic Acids Research,2020,48(4):1627-1651.

[21]HYTTINENA J M T,BLASIAKB J,FELSZEGHY S,et al.MicroRNAs in the regulation of autophagy and their possible use in age-related macular degeneration therapy[J].Ageing Research Reviews,2021,67:101260.

[22]XUA S W,KAMATOBC D,LITTLE P J,et al.Targeting epigenetics and non-coding RNAs in atherosclerosis:from mechanisms to therapeutics[J].Pharmacology&Therapeutics,2019,196:15-43.

[23]THIN K Z,TU J C,Raveendran S.Long non-coding SNHG1 in cancer[J].Clinica Chimica Acta,2019,494:38-47.

[24]CHI Y B,LUO Q C,SONG Y T,et al.Circular RNA circPIP5K1A promotes non-small cell lung cancer proliferation and metastasis through miR-600/HIF-1αregulation[J].Journal of Cellular Biochemistry,2019,120(11):19019-19030.

[25]NG W L,MOHD MOHIDIN T B,SHUKLA K.Functional role of circular RNAs in cancer development and progression[J].RNA Biology,2018,15(8):995-1005.

[26]BELOUSOVA E A,FILIPENKO M L,KUSHLINSKII NE.Circular RNA:New Regulatory Molecules[J].Bulletin of Experimental Biology and Medicine,2018,164(6):803-815.

[27] JIANG S,CHENG S J,REN L C,et al.An expanded landscape of human long noncoding RNA[J].Nucleic Acids Research,2019,47(15):7842-7856.

[28]ZHANG Y W,TAO Y,LIAO Q.Long noncoding RNA:a crosslink in biological regulatory network[J].Briefings in Bioinformatics,2018,19(5):930-945.

[29]RAMÓN Y CAJAL S,SEGURA M F,Hümmer S.Interplay Between ncRNAs and Cellular Communication:A Proposal for Understanding Cell-Specific Signaling Pathways[J].Frontiers in genetics,2019,10:281.

[30]COKER H,WEI G F,BROCKDORFF N.m6A modification of non-coding RNA and the control of mammalian gene expression[J].Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2019,1862(3):310-318.

[31]XIAO S,CAO S,HUANG Q,et al.The RNA N6-methyladenosine modification landscape of human fetal tissues[J].Nature Cell Biology,2019,21(5):651-661.

[32]KUPPERS D A,ARORA S,LIM Y T,et al.N6-methyladenosine mRNA marking promotes selective translation of regulons required for human erythropoiesis[J].Nature Communications,2019,10(1):4596.

[33]BORALDI F,LOFARO F D,QUAGLINO D.Apoptosis in the Extraosseous Calcification Process[J].Cells,2021,10(1):131.

[34]STEVENS H Y,BOWLES A C,YEAGO C,et al.Molecular Crosstalk Between Macrophages and Mesenchymal Stromal Cells[J].Frontiers in Cell and Developmental Biology,2020,8:600160.

[35]DE SANTA F,VITIELLO L,TORCINARO A,et al.The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration[J].Antioxidants&Redox Signaling,2019,30(12):1553-1598.

[36]VOLOVAT S R,VOLOVAT C,Hordila I,et al.MiRNA and LncRNA as Potential Biomarkers in Triple-Negative Breast Cancer:A Review[J].Frontiers in Oncology,2020,10:526850.

[37]XU G,XU W Y,XIAO Y,et al.The emerging roles of non-coding competing endogenous RNA in hepatocellular carcinoma[J].Cancer Cell International,2020,20(1):496.

[38]BHAT A A,YOUNES S N,RAZA S S,et al.Role of non-coding RNA networks in leukemia progression,metastasis and drug resistance[J].Molecular Cancer,2020,19(1):57.

[39]ZOU Y Z,CHEN B H.Long non-coding RNA HCP5 in cancer[J].Clinica Chimica Acta,2021,512:33-39.

[40]ASHRAFIZADEH M,ZARRABI A,OROUEI S,et al.STAT3 Pathway in Gastric Cancer:Signaling,Therapeutic Targeting and Future Prospects[J].Biology-Basel,2020,9(6):126.

[41]ZHANG H M,WANG J,YIN Y L,et al.The role of EMT-related lncRNA in the process of triple-negative breast cancer metastasis[J].Bioscience reports,2021,41 (2):BSR20203121.

[42]ZHOU G,LATCHOUMANIN O,HEBBARD L,et al.Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers[J].Advanced Drug Delivery Reviews,2018,134:107-121.

[43]DIANAT-MOGHADAM H,HEYDARIFARD M,Jahanban-Esfahlan R,et al.Cancer stem cells-emanated therapy resistance:Implications for liposomal drug delivery systems[J].Journal of Controlled Release,2018,288:62-83.

[44]ARNAIZ E,SOLE C,MANTEROLA L,et al.CircRNAs and cancer:Biomarkers and master regulators[J].Seminars in Cancer Biology,2019,58:90-99.

[45]LIU F,ZHANG H,XIE F,et al.Hsa_circ_0001361 promotes bladder cancer invasion and metastasis through miR-491-5p/MMP9 axis[J].Oncogene,2020,39(8):1696-1709.

[46]ALTESHA M A,NI T,KHAN A,et al.Circular RNA in cardiovascular disease[J].Journal of Cellular Physiology,2019,234(5):5588-5600.

[47]MERCER T R,DINGER M E,MATTICK J S.Long non-coding RNAs:insights into functions[J].Nature Reviews Genetics,2009,10(3):155-159.

[48]YANG J Z,QIU Q Z,QIAN X Y,et al.Long noncoding RNA LCAT1 functions as a ceRNA to regulate RAC1 function by sponging miR-4715-5p in lung cancer[J].Molecular Cancer,2019,18(1):171.

[49]WU Y M,YANG X L,CHEN Z J,et al.m6A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1[J].Molecular Cancer,2019,18:87.

[50]CREMER S,MICHALIK K M,Fischer A,et al.Hematopoietic Deficiency of the Long Noncoding RNA MALAT1 Promotes Atherosclerosis and Plaque Inflammation[J].Circulation,2019,139(10):1320-1334.

[51]SIMION S,HAEMMIG S,FEINBERG M W.LncRNAs in vascular biology and disease[J].Vascular Pharmacology,2019,114:145-156.

[52]CHEN X,SUN Y Z,GUAN N N,et al.Computational models for lncRNA function prediction and functional similarity calculation[J].Briefings in Functional Genomics,2019,18(1):58-82.

[53]CROCE C M.Causes and consequences of microRNA dysregulation in cancer[J].Nature Reviews Genetics,2009,10(10):704-714.

[54]CHEN X,ZHU C C,YIN J.Ensemble of decision tree reveals potential miRNA-disease associations[J].Plos Computational Biology,2019,15(7):e1007209.

[55]CHEN X,XIE D,ZHAO Q,et al.MicroRNAs and complex diseases:from experimental results to computational models[J].Briefings in Bioinformatics,2019,20(2):515-539.

[56]ZHOU Y,ZHENG X,XU B,et al.The Identification and Analysis of mRNA-lncRNA-miRNA Cliques From the Integrative Network of Ovarian Cancer[J].Frontiers in Genetics,2019,10:751.

[57]WANG H X,GIRES O.Tumor-derived extracellular vesicles in breast cancer:From bench to bedside[J].Cancer Letters,2019,460:54-64.

[58]CHESHOMI H,MATIN M M.Exosomes and their importance in metastasis,diagnosis,and therapy of colorectal cancer[J].Journal of Cellular Biochemistry,2019,120(2):2671-2686.

[59]XIAO Y W,ZHENG L,ZOU X F,et al.Extracellular vesicles in type 2 diabetes mellitus:key roles in pathogenesis,complications,and therapy[J].Journal of Extracellular Vesicles,8(1):1625677.

[60]DUAN H C,WANG Y,JIA G F.Dynamic and reversible RNA N-6-methyladenosine methylation[J].Wiley Interdisciplinary Reviews-RNA,2019,10(1):e1507.

[61]LIN X Y,CHAI G S,WU Y M,et al.RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail[J].Nature Communications,2019,10:2065.

[62]JIA R B,CHAI P W,WANG S Z,et al.m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation[J].Molecular Cancer,2019,18:161.

[63]JIANG W Q,GENG Y P,LIU Y K,et al.Genome-wide identification and characterization of SRO gene family in wheat:Molecular evolution and expression profiles during different stresses[J].Plant Physiology and Biochemistry,2020,154:590-611.

[64] ZHAI R R,YE S H,ZHU G F,et al.Identification and integrated analysis of glyphosate stress-responsive microRNAs,lncRNAs,and mRNAs in rice using genome-wide high-throughput sequencing[J].BMC Genomics,2020,21(1):238.

[65]WANG P F,DAI L M,AI J,et al.Identification and functional prediction of cold-related long non-coding RNA (lncRNA) in grapevine[J].Scientific Reports,2019,9:6638.

[66]REBL A,GOLDAMMER T.Under control:The innate immunity of fish from the inhibitors'perspective[J].Fish&Shellfish Immunology,2018,77:328-349.

[67]WANG J,WANG L,LOU G H,et al.Coptidis Rhizoma:a comprehensive review of its traditional uses,botany,phytochemistry,pharmacology and toxicology[J].Pharmaceutical Biology,2019,57(1):193-225.

[68]FIMOGNARI C,TURRINI E,FERRUZZI L,et al.Natural isothiocyanates:Genotoxic potential versus chemoprevention[J].Mutation Research-Reviews in Mutation Research,2012,750(2):107-131.

[69]LADEIRA M M,SCHOONMAKER J P,SWANSON K C,et al.Nutrigenomics of marbling and fatty acid profile in ruminant meat[J].Animal,2018,12:S282-S294.

[70]AXTELL M J,MEYERS B C.Revisiting criteria for plant microrna annotation in the era of big data[J].Plant Cell,2018,30(2):272-284.

[71]ZHANG J,WEI L,JIANG J,et al.Genome-wide identification,putative functionality and interactions between lncrnas and mirnas in brassica species[J].Scientific Reports,2018,8(1):4960.

[72]CARDOSO T C S,ALVES T C,CANESCHI C M,et al.New insights into tomato micrornas[J].Scientific Reports,2018,8(1):16069.

[73]RAI M I,ALAM M,LIGHTFOOT D A,et al.Classification and experimental identification of plant long non-coding RNAs[J].Genomics,2019,111(5):997-1005.

[74]FRYDRYCH CAPELARI É,DA FONSECA G C,GUZMAN F,et al.Circular and micro rnas from arabidopsis thaliana flowers are simultaneously isolated from ago-ip libraries[J].Plants-Basel,2019,8(9):302.

[75]ZHANG X,MA X,NING L,et al.Genome-wide identification of circular rnas in peanut (arachis hypogaea l.)[J].BMC Genomics,2019,20(1):653.

[76]HAN Y,LI X,YAN Y,et al.Identification,characterization,and functional prediction of circular rnas in maize[J].Molecular Genetics and Genomics,2020,295(2):491-503.

[77]WANG Y,XIONG Z,LI Q,et al.Circular rna profiling of the rice photo-thermosensitive genic male sterile line wuxiang s reveals circrna involved in the fertility transition[J].BMC Plant Biology,2019,19(1):340.

[78]GAO Z,LI J,LUO M,et al.Characterization and cloning of grape circular rnas identified the cold resistance-related vv-circats1[J].Plant Physiology,2019,180(2):966-985.

[79]LITHOLDO C G,FONSECA G C.Circular rnas and plant stress responses[J].Advances in Experimental Medicine and Biology,2018,1087:345-353.

[80]SARROPOULOS I,MARIN R,CARDOSO-MOREIRA M,et al H.Developmental dynamics of lncrnas across mammalian organs and species[J].Nature,2019,571(7766):510-514.

[81]BUSH S J,MURIUKI C,MCCULLOCH M E B,et al.Cross-species inference of long non-coding rnas greatly expands the ruminant transcriptome[J].Genetics Selection Evolution,2018,50(1):20.

[82]IBEAGHA-AWEMU E M,LI R,DUDEMAINE P L,et al.Transcriptome analysis of long non-coding rna in the bovine mammary gland following dietary supplementation with linseed oil and safflower oil[J].International Journal of Molecular Sciences,2018,19(11):3610.

[83]REN T,LI Z,ZHOU Y,et al.Sequencing and characterization of lncrnas in the breast muscle of gushi and arbor acres chickens[J].Genome,2018,61,(5):337-347.

[84]WANG L,YOU Z,WANG M,et al.Genome-wide analysis of circular rnas involved in marek's disease tumourigenesis in chickens[J].RNA Biology,2020,17(4):517-527.

[85]GEORGE A K,MASTER K,MAJUMDER A,et al.Circular rnas constitute an inherent gene regulatory axis in the mammalian eye and brain[J].Canadian Journal of Physiology and Pharmacology,2019,97(6):463-472.

[86]CHEN J,WANG H,JIN L,et al.Profile analysis of circrnas induced by porcine endemic diarrhea virus infection in porcine intestinal epithelial cells[J].Virology,2019,527:169-179.

[87]FAN B,CHEN F,LI Y,et al.A comprehensive profile of the tilapia (oreochromis niloticus) circular rna and circrna-mirna network in the pathogenesis of meningoencephalitis of teleosts[J].Molecular Omics,2019,15(3):233-246.

[88]HONG L,GU T,HE Y,et al.Genome-wide analysis of circular rnas mediated cerna regulation in porcine embryonic muscle development[J].Frontiers in Cell and Developmental Biology,2019,7:289.

[89]YANG Z,LI Y.Dissection of rnai-based antiviral immunity in plants[J].Current Opinion in Virology,2018,32:88-99.

[90]SHI C,HAN K,LI L,et al.Complete chloroplast genomes of 14 mangroves:phylogenetic and comparative genomic analyses[J].Biomed Research International,2020,2020:8731857.

[91]MEHMOOD F,ABDULLAH,SHAHZADI I,et al.Characterization of withania somnifera chloroplast genome and its comparison with other selected species of solanaceae[J].Genomics,2020,112(2):1522-1530.

[92]LING Z,BROCKMÖLLER T,BALDWIN I T,et al.Evolution of alternative splicing in eudicots[J].Frontiers in Plant Science,2019,10:707.

[93]RIGO R,BAZIN J,ROMERO-BARRIOS N,et al.The arabidopsis lncrna asco modulates the transcriptome through interaction with splicing factors[J].EMBO Reports,2020,21(5):e48977.

[94]CLARK S,YU F,GU L,MIN X J.Expanding alternative splicing identification by integrating multiple sources of transcription data in tomato[J].Frontiers in Plant Science,2019,10:689.

[95]JABRE I,REDDY A S N,KALYNA M,et al.Does co-transcriptional regulation of alternative splicing mediate plant stress responses?[J].Nucleic Acids Research,2019,47(6):2716-2726.

[96]DANTAS L L B,CALIXTO C P G,DOURADO M M,et al.Alternative splicing of circadian clock genes correlates with temperature in field-grown sugarcane[J].Frontiers in Plant Science,2019,10:1614.

[97]ZEMPLENI J,SUKREET S,ZHOU F,et al.Milk-derived exosomes and metabolic regulation[J].Annual Review of Animal Biosciences,2019,7:245-262.

[98]MA S,TONG C,IBEAGHA-AWEMU E M,et al.Identification and characterization of differentially expressed exosomal micrornas in bovine milk infected with staphylococcus aureus[J].BMC Genomics,2019,20(1):934.

[99]LIN D,CHEN T,XIE M,et al.Oral administration of bovine and porcine milk exosome alter mirnas profiles in piglet serum[J].Scientific Reports,2020,10(1):6983.

[100] LEE SWL,PAOLETTI C,CAMPISI M,et al.MicroRNA delivery through nanoparticles[J].JOURNAL OF CONTROLLED RELEASE,2019,313:80-95.

[101]ZHAO P,GUAN H T,DA Z J,et al.Long noncoding RNA DLX6-AS1 promotes breast cancer progression via miR-505-3p/RUNX2 axis[J].EUROPEAN JOURNAL OF PHARMACOLOGY,2019,865,文献号:172778

[102]SHANG W K,ADZIKA G K,LI Y J,et al.Molecular mechanisms of circular RNAs,transforming growth factor-β,and long noncoding RNAs in hepatocellular carcinoma[J].Cancer Medicine,2019,8(15):6684-6699.

[103]MIRZAEIS,ZARRABI A,ASNAF S E,et al.The role of microRNA-338-3p in cancer:growth,invasion,chemoresistance,and mediators[J].Life Sciences,2021,268:119005.

[104]INGOLIA N T,BRAR G A,ROUSKIN S,et al.The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments[J].Nature Protocols,2012,7(8):1534-1550.

[105]INGOLIA N T.Ribosome profiling:new views of translation,from single codons to genome scale[J].Nature Reviews Genetics,2014,15(3):205-213.

[106]CHEN G,NING B T,SHI T L.Single-Cell RNA-Seq Technologies and Related Computational Data Analysis[J].Frontiers in Genetics,2019,10:317.

[107]CHOI Y H,KIM J K.Dissecting Cellular Heterogeneity Using Single-Cell RNA Sequencing[J].Molecules and Cells,2019,42(3):189-199.

[108]HAN X P,ZHOU Z M,FEI LJ,et al.Construction of a human cell landscape at single-cell level[J].Nature,2020,581(7808):303-309.

[109]WU Y,ZHANG K.Tools for the analysis of high-dimensional single-cell RNA sequencing data[J].Nature Reviews Nephrology,2020,16(7):408-421.

[110]CHEN L,ZHAI Y Y,HE Q Y,et al.Integrating Deep Supervised,Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation[J].Genes,2020,11(7):792.

[111]SARDH E,HARPER P,BALWANI M,et al.Phase 1 Trial of an RNA Interference Therapy for Acute Intermittent Porphyria[J].New England Journal of Medicine,2019,380(6):549-558.

[112]COOPER A M,SILVER K,ZHANG J Z,et al.Molecular mechanisms influencing efficiency of RNA interference in insects[J].Pest Management Science,2019,75(1):18-28.

[113]KOZOMARA A,BIRGAOANU M,GRIFFITHS-JONES S.miRBase:from microRNA sequences to function[J].Nucleic Acids Research,2019,47(D1):D155-D162.

[114]LI JH,LIU S,ZHOU H,et al.starBase v2.0:decoding miRNA-ceRNA,miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J].Nucleic Acids Research,2014,42(D1):D92-D97.

[115]LIU Q,SHVARTS T,SLIZ P,et al.RiboToolkit:an integrated platform for analysis and annotation of ribosome profiling data to decode mRNA translation at codon resolution[J].Nucleic Acids Research,2020,48(W1):W218-W229.

[116]HUANG D W,SHERMAN B T,LEMPICKI,R A.Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J].Nature Protocols,2009,4(1):44-57.

[117]JIAO X,SHERMAN B T,STEPHENS R,et al.DAVID-WS:a stateful web service to facilitate gene/protein list analysis.Bioinformatics,2012,28 (13):1805-1806.

[118]PENG L H,TIAN X F,TIAN G,et al.Single-cell RNA-seq clustering:datasets,models,and algorithms[J].RNA Biology,2020,17(6):765-783.

[119] HE Y,YUAN H,WU C,et al.Disc:a highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semi-supervised deep learning[J].Genome Biology,2020,21(1):170.

[120]ARISDAKESSIAN C,POIRION O,YUNITS B,et al.Deepimpute:an accurate,fast,and scalable deep neural network method to impute single-cell rna-seq data[J].Genome Biology,2019,20(1):211.

[121] BERNSTEIN N J,FONG N L,LAM I,et al.Solo:doublet identification in single-cell rna-seq via semi-supervised deep learning[J].Cell Systems,2020,11(1):95-101.e5.

[122]WANG T,JOHNSON T S,SHAO W,et al.Bermuda:a novel deep transfer learning method for single-cell rna sequencing batch correction reveals hidden high-resolution cellular subtypes[J].Genome Biology,2019,20(1):165.

[123]TORROJA C,SANCHEZ-CABO F.Digitaldlsorter:deep-learning on scrna-seq to deconvolute gene expression data[J].Frontiers in Genetics,2019,10:978.

[124]ZHU G Z,CHEN X Y.Aptamer-based targeted therapy[J].Advanced Drug Delivery Reviews,2018,134:65-78.

[125]检索日期:2021-02-26,有效药物是指去除无进展报道、中止、撤回的新药。

[126]梅斯.首次RNAi基因治疗药物获得FDA批准用于治疗hATTR成年患者[EB/OL].[2020-08-09].https://www.medsci.cn/article/show_article.do?id=d79e14650066.

[127]PERSISTENCE MARKET RESEARCH.RNA based Therapeutics and Vaccines Market Value and Forecast[EB/OL].[2020-08-09].https://www.persistencemarketresearch.com/market-research/rna-based-therapeutics-and-vaccines-market.asp.

[128]市场向好,局限仍在,核酸药物产业如何进一步破题?[EB/OL].[2020-08-09].https://www.sohu.com/a/341154788_795989.

[129]Insightace Analytic Pvt.Ltd.Global RNA Based Therapeutics Market Assessment[EB/OL].[2020-05-09].https://www.insightaceanalytic.com/report-details/global-rna-based-therapeutics-market-assessment/.

[130]核酸药物行业市场前景广阔 未来几年进入发展快车道[EB/OL].[2020-08-09].http://www.newsijie.com/chanye/yiyao/jujiao/2018/0212/11243226.html.