联邦学习原理与算法
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.1.3 联邦学习的相关法规与社区

在享受科技带给人们便利的同时,数据滥用、数据窃取、隐私泄露,以及“大数据杀熟”等数据安全问题呈陡增和爆发趋势。加强法律法规的建设成为各国和地区的共识。如欧盟保护个人数据的《通用数据保护条例》(General Data Protection Regulation,GDPR);美国的《加利福尼亚州消费者隐私法案》(California Consumer Privacy Act,CCPA);我国实施的《中华人民共和国网络安全法》(简称《网络安全法》)。这些法规的出台,大大增加了数据保护的强制性和责任性。了解这些法律法规,对于更好地推进我们的工作,有着极其重要的意义。下面从国外和国内法律法规两个角度进行介绍。

(1)国外相关法规

国外的法规对国内的企业在该国境内的数据处理以及数据的传输,同样有法律影响和效力。欧盟于2018年5月25日正式实施了《通用数据保护条例》(General Data Protection Regulation,GDPR),它是一项保护欧盟公民个人隐私和数据的法律,其适用范围包括欧盟成员国境内企业的个人数据,也包括欧盟境外企业处理欧盟公民的个人数据。GDPR由11章99个条款组成,是一项“大而全”的个人数据保护框架,因此非常值得深入研究。美国已有多个州在数据安全与隐私保护上进行了立法,其中最著名的要数2018年6月加利福尼亚州通过的《加利福尼亚州消费者隐私法案》(California Consumer Privacy Act,CCPA),该法案被称为美国“最严厉和最全面的个人隐私保护法案”,于2020年1月1日生效。

(2)国内相关法规

我国在数据安全与个人信息上目前涉及的法规有《中华人民共和国刑法》(以下简称《刑法》)、《最高人民法院、最高人民检察院关于办理侵犯公民个人信息刑事案件适用法律若干问题的解释》(以下简称《若干问题的解释》)、《中华人民共和国网络安全法》和《电信和互联网用户个人信息保护规定》。2019年5月28日,国家互联网信息办公室发布《数据安全管理办法》(征求意见稿)。在《网络安全法》的指导下,该法规对数据安全做了详细的规定和约束。它明确法规的管理范围是在中华人民共和国境内利用网络开展数据收集、存储、传输、处理、使用等活动,数据安全分为个人信息和重要数据安全。

这些法律法规对于个人信息的定义、个人信息的正确使用方法、消费者知情权、访问权、删除权、限制处理权和拒绝权等权利,以及如何处理违规企业等方面进行了明确的规定。随着科技的发展,未来一定会暴露出更多用户安全的问题。与此同时,相关的法律法规也会更加完善。

联邦学习是人工智能非常活跃的研究领域。每年有大量的论文发表,人工智能、分布式系统等领域的顶级会议也越来越多地接受联邦学习相关工作,并组织相关研讨会(Work-shops)。谷歌在2016年提出了联邦学习的概念,以隐私保护、协作式学习的特点吸引了大量研究者的关注。各种联邦社区平台也如雨后春笋般发展起来。读者可以从联邦学习门户网站[1]了解相关信息,该网站不仅仅包含联邦学习的各种资料、课程,还有相关的会议、期刊特刊的实时信息。另外产业界也纷纷行动,例如国外的网站有:谷歌推出的Tensorflow-Fed-erated[2],美国南加州大学开发的FedML[3],由欧洲机构主导开发的OpenMined推出的PySyft[4]。国内新老科技企业也纷纷布局联邦学习,如百度的PaddleFL[5],腾讯和微众出品的FATE[6],京东的FedLearn[7],还有字节跳动的Fedlearner[8]。从这些社区平台上,人们可以和行业的引领者对话,了解联邦学习的发展动态和热点,为自己在科研界或者学术界的方向选择或项目确立提供了重要的信息支持。