1.1 退役动力电池现状概述
1.1.1 退役动力电池规模及利用意义
我国电动汽车在近几年里使用规模快速扩大,动力电池退役的期限已经到来。根据目前相关数据进行推算,预计未来几年的动力电池将要进入退役高峰期:2022年退役新能源汽车可提供动力电池包约50万吨(折合装机量45GW·h),2023年动力电池的回收量将达到44万吨。到2025年我国退役动力电池将达到150GW·h,需要回收的废旧电池将达到100万吨左右,动力电池梯次利用以及回收市场规模有望达到370亿元。按照中国汽车产业中长期发展规划,到2025年,新能源汽车销量占总销量比例达到20%以上[1-3]。
退役动力电池虽然不能再执行高性能的驱动任务,但仍然可以在其他领域和应用中发挥重要作用,仍有很大的使用空间。对退役动力电池进行大规模回收,可以有效弥补我国锂、钴、镍等电池材料的资源短缺现况,若采用梯次回收的方式对电池进行再利用,使其在不同应用场景下继续供电,可以节约和高效利用大量的资源。由于退役动力电池中含有大量有害重金属,将退役动力电池梯次利用,避免了大规模废旧动力电池的随意搁置和废弃,减少了废弃电池对人体和环境的污染,很大程度上保护了我国本土的生态环境。此外,退役动力电池在使用一定周期或发生剧烈碰撞后,锂电芯内部正负极隔膜就会容易发生错位,使得电池内部正负极直接相连,产生短路,进而引起电池自燃。加强退役动力电池梯次回收利用工作,有利于实现废旧动力电池的规范、安全处置,消除安全隐患[4-7]。
另一方面,由于新能源汽车市场的迅速发展,对退役电池梯次利用的使用空间巨大,退役动力电池的梯次利用行业一直备受关注。截至2022年10月,国家已颁布多个退役电池梯次利用相关政策。但是,退役动力电池梯次利用一直处于一种难以实施、难以管控的情况,若退役动力电池梯次利用相关政策能够细化至全国各地,可以逐步规范化,由相关示范工程牵头,带领更多的试点企业参与动力电池梯次利用项目,并将退役动力电池梯次利用的范围逐步推广,必能在退役动力电池梯次利用方面节约更多的资源,更有效地保护环境。我国自2018年开始进入动力电池大规模退役时期,2020年有25.6GW·h的动力电池退役,2025年动力电池退役将达174.2GW·h,约100万吨的规模。
用于梯次利用的退役电池总量包含退役梯次利用及拆解回收的电池总量,根据相关数据测算,预测未来用于梯次利用的电池退役量及其价值如图1-1、图1-2所示。
图1-1 动力电池退役规模预测图
图1-2 退役动力电池梯次利用预估图
退役动力电池的全寿命周期约为20年,但退役动力电池在新能源汽车中使用的平均寿命只有5~8年。在退役动力电池回收过程中,电池的再次利用为重点研究部分,应通过梯次利用策略形成退役电池的多批次使用。由图1-1可看出,未来动力电池退役规模正在逐渐扩大,这也意味着动力电池退役的管控问题越来越严峻。若没有强有力的政策标准对如此大规模的动力电池退役情况进行制约,将会导致退役动力电池市场秩序混乱[8-10]。
从经济性的角度分析,退役后进行梯次利用的动力电池在之后的利用价值越来越高,预计2025年梯次利用价值将达到数十亿美元的规模。从实用性的角度分析,其使用成本约为1000元/(kW·h),性价比远超过铅酸电池,因此退役动力电池梯次利用具有很大的市场竞争力。正因为看到了梯次利用的广阔前景,一些企业发现了此领域的机遇并已经开始在此领域逐步探索。如北京匠芯电池研发了梯次利用光储系统,深圳比亚迪等企业生产用于备电领域的梯次利用电池等。
我国在电池梯次利用的技术研究方面处于起步阶段,技术难点有重组技术、寿命预测和热管理技术等。梯次利用技术的核心要求是保证目标产品的品质和安全。具体而言,一是来料的品质安全控制,二是目标产品的生产过程控制,还有目标产品的控制和设计。目前,国家把梯次利用检测技术作为重点研究,检测技术要求对退役电池包进行健康指数评价,包括电芯评估、电池包电性能检测、电池包的可靠性检测、电池包/模组外观检测。
通常情况下,电芯的性能评估分为寿命评估、安全性评估和可靠性评估,包括电池包的可靠性、电池包连接件可靠性以及管理系统硬件的可靠性等;而电池包电性能检测则能够排除安全隐患;此外,直流内阻的变化、电压差的变化以及电池包外形的变化等,都在健康指数的评估内容中,比如电池包的外形为例,在车载过程中难免会发生意外,比如车祸、内涝,都会引起一系列外部构件的变化,需要通过评测来反映电池所处的状况[11-15]。