量子霸权
上QQ阅读APP看书,第一时间看更新

它们为何如此强大?

是什么让量子计算机如此强大,以至于全世界各个国家都迫不及待地想掌握这项新技术?

从本质上讲,所有近现代计算机都是基于数字信息技术的,均采用一系列0和1的组合进行编码。信息的最小单位,即单个数字,被称为“位”。将0和1的序列输入数字处理器,随后数字处理器就开始进行计算,计算出结果后再输出。例如,你的互联网连接速度可以用每秒的比特数(缩写为bps)来衡量,所以1G带宽就是指每秒有10亿多个字节被发送到你的电脑,因此你可以比较流畅地实时访问电影、电子邮件、文档等。

然而,1959年诺贝尔奖得主理查德·费曼观察到了一种不同的数字信息方法。在一次名为“底部有足够的空间”的颇具预言性、开创性的演讲,以及后来发表的论文中,费曼都曾提问:“为什么不考虑用原子状态取代0和1序列从而制造出一台原子计算机呢?为什么不用尽可能小的物质——原子去代替晶体管呢?”

原子就像一个一直旋转的陀螺。在磁场中,它们的位置是相对更加灵活的,可以顺应磁场产生向上或向下排列,以此来对应于0或1的排列。数字计算机的计算能力与计算机中的位数(0或1)直接相关。

但亚原子世界的规则是不稳定的,因为原子可能旋转到两者的任意组合当中。例如,可能存在这样一种状态,原子有10%的时间是自旋向上的、90%的时间是自旋向下的,或者有65%的时间是自旋向上的、35%的时间是自旋向下的。事实上,原子自旋的这种规则可能导致无数种状态,从而大大增加了去描述更多数量的各种状态的可能性。因此,原子表现出能够携带更多信息的属性,这时基本单位也不再是一个比特,而是一个量子位,即同步实现向上和向下的不同组合。数字算法下的比特单位,每次只能携带一位信息,从而限制了它们的能力。对比之下,量子位的能力几乎可以说是无限的,这是因为在原子水平上,某一个物质往往可以实现同时以多种不同状态存在,这被称为“量子叠加”。(这就意味着,常见的通用定律在原子水平上不再适用。因为在原子这个特殊维度上,原子中的电子甚至可以同时在两个不同状态下存在,而大型物体是不可能做到这一点的,它们不可能同时出现在两个不同地方。)

此外,这些量子位之间还可以相互作用,而这对于普通的比特来说也是不可能的,这种量子位之间的相互作用叫作“量子纠缠”。与每一个比特都是处于相对独立的存在状态有所不同,每当增加一个新的量子位时,这个量子位都会与之前的所有量子位发生相互作用,从而使原来的量子位之间可能发生相互作用的次数直接增加一倍。也正因有这样的内在属性,量子计算机天生就比数字计算机强大得多,因为每增加一个额外量子位,交互次数就会翻倍。

举个例子,当下的量子计算机已经可以拥有100多个量子位。这就意味着,这些量子计算机的计算能力相当于那些只拥有一个量子位的超级计算机的2100 倍。

谷歌的Sycamore量子计算机就是全球第一台实现量子霸权的计算机,其拥有的53个量子位能够处理720亿吉字节内存。因此,在Sycamore这样的量子计算机面前,任何传统计算机都相形见绌。

无论是对商业还是对科学来说,量子计算机的强大计算能力带来的影响都将是巨大的。当我们从数字经济的世界过渡到量子经济的世界时,更大的风险也将随之而来。