前言
研究表明,人类大脑处理图形的速度要比文字快几万倍,如何将海量的数据转换成可视化的图形是数据分析的必修课。Matplotlib和Pyecharts是Python中常用的两个可视化库,其功能强大,可以方便地绘制折线图、条形图、柱形图、散点图等基础图形,还可以绘制复杂的图形,如日历图、树形图、聚类图等。
Matplotlib是Python数据可视化库的泰斗,尽管已有十多年的历史,但仍然是Python社区中使用广泛的绘图库,它的设计与MATLAB非常相似,提供了一整套和MATLAB相似的命令API,适合交互式制图,还可以将它作为绘图控件,嵌入其他应用程序中。
Pyecharts是一款将Python与Echarts相结合的数据可视化工具,可以高度灵活地配置,轻松搭配出精美的视图。其中Echarts是百度开源的一个数据可视化库,而Pyecharts将Echarts与Python进行有机对接,方便在Python中直接生成各种美观的图形。
本书首先介绍大数据可视化分析的一些基础知识和主要技术,然后通过实际案例重点讲解Matplotlib和Pyecharts在数据可视化分析过程中的使用方法及技巧,还提供了大量实际项目案例,希望能够帮助读者掌握大数据可视化技术,提升职场竞争力。
本书内容
本书分4篇,共13章,各章内容概述如下:
第1篇(第1~4章)介绍Python数据可视化基础。
第1章介绍Python环境的安装,包括如何搭建代码开发环境,以及pip包管理工具。
第2章介绍Python编程基础知识,包括数据类型、基础语法、常用高阶函数等。
第3章介绍Pandas数据处理,包括数据读取、索引、切片、聚合、透视、合并等。
第4章介绍Python主要的数据可视化库,如Matplotlib、Pyecharts、Seaborn、Bokeh等。
第2篇(第5~7章)介绍Matplotlib数据可视化。
第5章介绍Matplotlib的图形参数设置,如线条、坐标轴、图例及其参数配置等。
第6章介绍使用Matplotlib绘制一些基础图形,如直方图、折线图、饼图、散点图等。
第7章介绍使用Matplotlib绘制一些高级图形,如树形图、误差条形图,以及图形整合等。
第3篇(第8~10章)介绍Pyecharts数据可视化。
第8章介绍Pyecharts的图形参数配置,如全局配置项、系列配置项和运行环境。
第9章介绍使用Pyecharts绘制一些常用图形,如折线图、条形图、箱形图、K线图等。
第10章介绍使用Pyecharts绘制一些高级图形,如日历图、仪表盘、环形图、词云等。
第4篇(第11~13章)介绍数据可视化案例。
第11章利用Python软件对近几年来上海市的空气质量数据进行可视化分析。
第12章从人口总数、增长率、抚养比等方面,对我国的人口现状和趋势进行分析。
第13章通过Python爬取京东商品的用户评论数据,并进行评论文本的可视化分析。
本书特色
本书编者拥有十余年大数据分析和挖掘从业经验,本书内容大部分是实际工作经验的分享,其中涉及大量可视化经验和案例,有较大参考价值。
依据数据可视化流程进行讲解,首先介绍Python基础,然后介绍Pandas数据预处理技术,再介绍Matplotlib和Pyecharts可视化工具,最后讲解了几个可视化项目,循序渐进,从入门到实践,既适合初学者入门,也适合对可视化图形和工具不熟悉的从业者掌握知识和提升技能。
本书以某电商企业数据可视化为例,书中给出了大量可视化案例,介绍了各种可视化图形的绘制方法和技巧,读者可以依照本书提供的实例和相应的数据进行演练,边学边练,高效掌握,并且能够解决实际工作中遇到的问题。
本书提供了完整的数据资源(数据基本存储在MySQL数据库中)和教学视频,读者可以使用本书的数据资源进行练习,遇到学习上的问题,还可以扫码观看教学视频,从而大幅提升学习效率。
读者对象
本书适用于互联网、电商、咨询等行业的数据分析人员以及媒体、网站等数据可视化用户,可供高等院校相关专业的学生以及从事大数据可视化的研究者参考使用,也可作为Python软件培训和自学用书。
截至2023年5月,Matplotlib的版本为3.7.0,Pyecharts的版本为2.0.2,本书正是基于以上版本编写的,全面而详细地介绍了Matplotlib和Pyecharts在数据可视化分析中的应用。
配书资源
为方便读者学习本书,本书还提供了教学视频、源代码和PPT课件,其中教学视频扫描各章的二维码即可直接观看。源代码和PPT课件可以扫描以下二维码获取。
如果你在学习和资源下载的过程中遇到问题,可以发送邮件至booksaga@126.com,邮件主题写“Python数据可视化之Matplotlib与Pyecharts实战”。
由于编者水平所限,书中难免存在疏漏之处,请广大读者批评指正。
编者
2023年8月