更新时间:2022-07-20 18:00:00
封面
版权信息
作者简介
序一
序二
序三
序四
序五
前言
第1章 初识Serverless架构
1.1 Serverless架构的概念
1.2 Serverless架构的特点
1.2.1 优势与价值
1.2.2 面临的挑战
1.3 Serverless架构的应用场景
第2章 Serverless架构下的应用开发
2.1 Serverless架构下的应用开发流程
2.2 与ServerFul应用开发流程对比
2.3 传统Web框架部署与迁移
2.3.1 请求集成方案
2.3.2 其他方案
2.4 Serverless应用的开发和部署
2.4.1 如何开发、部署Serverless应用
2.4.2 如何对Serverless应用进行调试
2.4.3 通过开发者工具进行依赖安装和项目构建
2.4.4 Serverless架构与CI/CD工具的结合
2.5 Serverless应用的可观测性
第3章 机器学习入门
3.1 什么是人工智能
3.1.1 人工智能、机器学习和深度学习
3.1.2 人工智能的发展
3.1.3 人工智能的典型应用场景
3.2 常用的机器学习算法
3.2.1 常见的监督学习算法
3.2.2 常见的无监督学习算法
3.2.3 其他常见的深度学习模型
第4章 主流机器学习框架与Serverless架构结合
4.1 scikit-learn与Serverless架构结合
4.1.1 scikit-learn介绍
4.1.2 scikit-learn实践:鸢尾花数据分类
4.1.3 与Serverless架构结合:文本分类
4.2 TensorFlow与Serverless架构结合
4.2.1 TensorFlow介绍
4.2.2 TensorFlow实践:基于人工智能的衣物区分
4.2.3 与Serverless架构结合:目标检测系统
4.3 PyTorch与Serverless架构结合
4.3.1 PyTorch介绍
4.3.2 PyTorch实践:图像分类系统
4.3.3 与Serverless架构结合:对姓氏进行分类
4.4 PaddlePaddle与Serverless架构结合
4.4.1 PaddlePaddle介绍
4.4.2 PaddlePaddle实践:手写数字识别任务
4.4.3 与Serverless架构结合:PaddleOCR项目开发与部署
第5章 Serverless架构下的AI项目实战
5.1 Serverless架构下的AI应用
5.1.1 项目的开发与部署
5.1.2 冷启动优化
5.1.3 训练与推理性能优化
5.1.4 模型更新迭代方案
5.2 模型升级在Serverless架构下的实现与应用
5.2.1 模型升级迭代需求背景介绍
5.2.2 猫狗识别项目训练
5.2.3 将模型部署到Serverless架构
5.2.4 用户反馈与模型迭代
5.2.5 项目总结
5.3 人脸识别在Serverless架构下的应用
5.3.1 人脸识别技术介绍
5.3.2 人脸识别模型训练
5.3.3 人脸识别模型的应用
5.3.4 项目Serverless化
5.3.5 项目总结
5.4 文本情感分析在Serverless架构下的应用
5.4.1 文本情感分析介绍
5.4.2 情感分析模型的训练
5.4.3 部署到Serverless架构
5.4.4 项目Serverless化
5.4.5 项目总结
第6章 基于Serverless架构的智能问答系统
6.1 需求分析
6.2 整体设计
6.2.1 数据库设计
6.2.2 原型图设计
6.2.3 接口设计
6.2.4 架构设计
6.3 项目开发
6.3.1 项目初始化
6.3.2 数据库与表的建设
6.3.3 管理后台相关能力的配置
6.3.4 业务逻辑开发
6.4 项目部署与运维
6.5 项目预览
6.6 项目总结
第7章 基于Serverless架构的人工智能相册小程序
7.1 需求分析
7.2 整体设计
7.2.1 数据库设计
7.2.2 原型图设计
7.2.3 细节设计
7.2.4 架构设计
7.3 项目开发