命题III 定理III
每一个物体,向另一无论怎样运动的物体的中心引半径,围绕那个中心画出的面积与时间成比例,它被由来自趋向另一个物体的向心力及来自另一个物体被推动的总的加速力的合力所推动。
设第一个物体为L,另一个物体为T:且(由诸定律的系理6)如果两个物体沿平行线被一个新力推动,它等于且与那个力相反,由那个力另一个物体T被推动;第一个物体L继续围绕另一个物体T画出与以前相同的面积,但力,由它另一个物体T被推动,现在被等于且与此力相反的力所抵消;且所以(由定律I)现在留给另一个物体T自身或者静止,或者均匀向前的运动:且第一个物体L由力的差推动,亦即,剩余力推动它围绕另一个物体T继续画出与时间成比例的面积。所以(由定理II)力的差趋向作为中心的另一个物体T。此即所证。
系理1 因此,如果一个物体L向另一个物体T所引半径画出的面积与时间成比例;则从整个力(无论是简单的力,或者根据诸定律的系理2由几个力合成的力),由它前一个物体L被推动,减去(由诸定律的同一个系理)整个加速力,由它后一个物体被推动的:剩余的整个力,由它前一个物体被推动,趋向作为中心的后一个物体T。
系理2 且如果那个面积与时间非常接近地成比例,则剩余力非常接近地趋向另一个物体T。
系理3 且反之亦然,如果剩余力非常接近地趋向另一个物体T,则那个面积与时间非常接近地成比例。
系理4 如果物体L向另一个物体T所引半径画出的面积,与时间相比非常不相称;且另一个物体T或者静止,或者均匀地向前运动:趋向那另一个物体T的向心力的作用或者没有,或者它混合并复合了其他很强的力的作用;如果有多个力,由所有的力合成的总力,指向另外一个(无论不动的或者运动的)中心。当另一个物体无论怎样运动时,得到同样的事情,只要向心力被取为减去作用于另一个物体T的整个力之后所余的力。
既然画出相等的面积表示存在一个中心,那个使物体受到最大影响,由直线运动被拉回并被保持在自己的轨道上的力转向它;以后我们为何不用画出相等的面积作为一个中心的标志,在自由空间中围绕这一中心的所有环绕运动得以发生呢?