3.2.2 滤波模型
在所有的线性形式的滤波器中,线性均方估计滤波器是最优的[17-20]。线性均方误差准则下的滤波器包括:维纳滤波器和卡尔曼滤波器,稳态条件下二者是一致的,但卡尔曼滤波器适用于有限观测间隔的非平稳问题,它是适合于计算机计算的递推算法。
2.5节给出静态(非时变)情况下随机向量x的最小均方误差估计为
其对应的条件误差协方差矩阵为
类似地,动态(时变)情况下的最小均方误差估计可定义为
式中
与式(3.41)相伴的状态误差协方差矩阵定义为
把以Zk为条件的期望算子应用到式(3.31)中,得到状态的一步预测为
预测值的误差为
一步预测协方差为
注意:一步预测协方差P(k+1|k)为对称阵,它可用来衡量预测的不确定性,P(k+1|k)越小则预测越精确。
通过对式(3.32)取在k+1时刻、以Zk为条件的期望值,可以类似地得到量测的预测是
进而可求得量测的预测值和量测值之间的差值为
量测的预测协方差(或新息协方差)为
注意:新息协方差S(k+1)也为对称阵,它用来衡量新息的不确定性,新息协方差越小,则说明量测值越精确。
状态和量测之间的协方差为
增益为
增益的大小反映了最新观测信息对状态估计量的贡献大小。
进而,可求得k+1时刻的状态更新方程为
式中,v(k+1)为新息或量测残差,即
式(3.52)说明k+1时刻的估计等于该时刻的状态预测值再加上一个修正项,而这个修正项与增益K(k+1)和新息有关。
协方差更新方程为
式中,I为与协方差同维的单位阵。式(3.57)可保证协方差矩阵P的对称性和正定性。
滤波器增益的另一种表示形式为
卡尔曼滤波除了系统噪声和量测噪声为高斯白噪声且已知其二阶矩之外,不需任何其他条件,因而完全适用于非平稳、多维的随机序列的估计问题。图3.3给出了卡尔曼滤波所包含的方程及滤波流程,而卡尔曼滤波算法单次循环流程图如图3.4所示,其余的依次类推。
图3.3 卡尔曼滤波算法框图
图3.4 卡尔曼滤波算法单次循环流程图